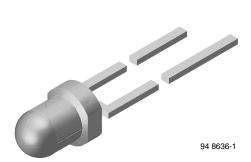


HALOGEN FREE


GREEN

www.vishay.com

Vishay Semiconductors

Infrared Emitting Diode, 950 nm, GaAs

DESCRIPTION

TSUS4300 is an infrared, 950 nm emitting diode in GaAs technology molded in a blue tinted plastic package.

FEATURES

Package type: leadedPackage form: T-1

• Dimensions (in mm): Ø 3

• Peak wavelength: $\lambda_p = 950 \text{ nm}$

· High reliability

• Angle of half intensity: $\varphi = \pm 16^{\circ}$

• Low forward voltage

· Suitable for high pulse current operation

• Good spectral matching with Si photodetectors

Package matches with detector TEFT4300

 Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Infrared remote control and free air transmission systems with low forward voltage and small package requirements
- Emitter in transmissive sensors
- Emitter in reflective sensors

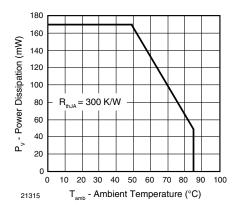
PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (°)	$\lambda_{\mathbf{p}}$ (nm)	t _r (ns)	
TSUS4300	18	± 16	950	800	

Note

• Test conditions see table "Basic Characteristics"

ORDERING INFORMATION			
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM
TSUS4300	Bulk	MOQ: 5000 pcs, 5000 pcs/bulk	T-1
TSUS4300-ASZ	Ammopack	MOQ: 10 000 pcs, 2000 pcs/box	T-1

Note


· MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V_{R}	5	V	
Forward current		I _F	100	mA	
Peak forward current	$t_p/T = 0.5$, $t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	2	Α	
Power dissipation		P _V	170	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	-40 to +85	°C	
Storage temperature range		T _{stg}	-40 to +100	°C	
Soldering temperature	t ≤ 5 s, 2 mm from case	T _{sd}	260	°C	
Thermal resistance junction to ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	300	K/W	

www.vishay.com

Vishay Semiconductors

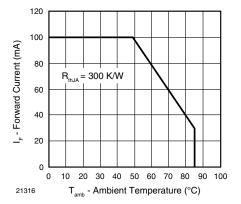


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F	-	1.3	1.7	V
	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	V _F	-	2.2	-	V
Temperature coefficient of V _F	I _F = 100 mA	TK _{VF}	-	-1.3	-	mV/K
Reverse current	V _R = 5 V	I _R	-	-	100	μΑ
Breakdown voltage	I _R = 100 μA	V _(BR)	5	40	-	
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Cj	-	30	-	pF
Dadient intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	7	18	35	mW/sr
Radiant intensity	$I_F = 1.5 \text{ A}, t_p = 100 \mu \text{s}$	l _e	-	160	-	mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	φ _e	-	20	-	mW
Temperature coefficient of ϕ_e	I _F = 20 mA	TKφ _e	-	-0.8	-	%/K
Angle of half intensity		φ	-	± 16	-	0
Peak wavelength	I _F = 100 mA	λρ	-	950	-	nm
Spectral bandwidth	I _F = 100 mA	Δλ	-	50	-	nm
Temperature coefficient of λ_p	I _F = 100 mA	TKλ _p	-	0.2	-	nm/K
Rise time	I _F = 100 mA	t _r	-	800	-	ns
	I _F = 1.5 A	t _r	-	400	-	ns
Fall time	I _F = 100 mA	t _f	-	800	-	ns
	I _F = 1.5 A	t _f	-	400	-	ns
Virtual source diameter		d	-	2.1	-	mm

Vishay Semiconductors

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

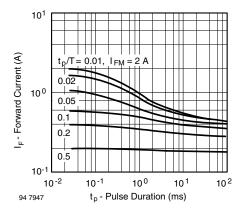


Fig. 3 - Pulse Forward Current vs. Pulse Duration

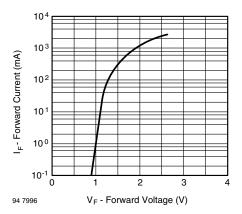


Fig. 4 - Forward Current vs. Forward Voltage

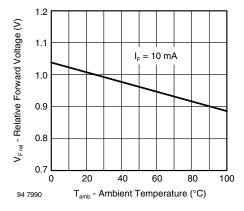


Fig. 5 - Relative Forward Voltage vs. Ambient Temperature

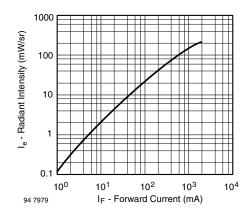


Fig. 6 - Radiant Intensity vs. Forward Current

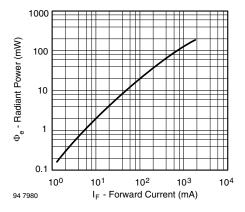


Fig. 7 - Radiant Power vs. Forward Current

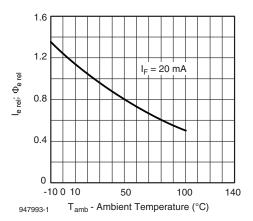


Fig. 8 - Relative Radiant Intensity/Power vs. Ambient Temperature

www.vishay.com

Vishay Semiconductors

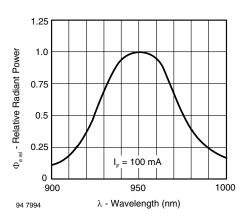


Fig. 9 - Relative Radiant Power vs. Wavelength

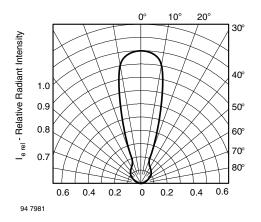
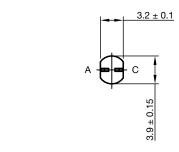
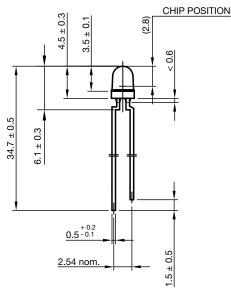
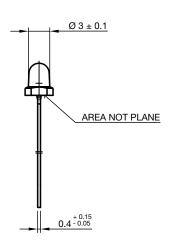





Fig. 10 - Relative Radiant Intensity vs. Angular Displacement

PACKAGE DIMENSIONS in millimeters

Drawing-No.: 6.544-5269.02-4

Issue: 5; 28.07.14

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Emitters - High Power category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

TSHA6201 TSHA6202 SFH 4030 SFH 4060 SFH 4775S A01 SFH 4726AS SFH 4725AS VSMY2853SLX01 VSMY2853RGX01

VSMY2853GX01 VSMY2850GX01 IN-P281ASGHIR IN-P281ASGIR VSMY2890GX01 VSMY2890RGX01 SFH 4728AS A01 SST-10-IRD-B130H-S940 SST-10-IRD-B50H-S940 QEE123 TSHA6200 TSML1030 VTE1291W-2H LL-304IRC4B-2AD LL-503HIRT2E-1CC

LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL-503SIRC2E-1BD LL-S170IRC-2A SFH 4259

OS5RKAZ5D1P OSB56LZE31D OSG58AZ5D1P OSI3CA5111A OSI3NAS1C1A OSI5LA56A1A OSI5XNE3E1E OSIXCA5121A

OSIXCAS1C1A OSM54LZ5D1P OSM5D3Z2C1P OSMR43Z2C1P OSO5PAZ161D OSOR7161D OSPW7161D OSPW71B1P

OSR5PAZE31D OSR9XAE3E1E OSRICA3131A