

Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

DESCRIPTION

VCNL4000 is a fully integrated proximity and ambient light digital 16-bit resolution sensor in a miniature lead less package (LLP) for surface mounting. It includes a signal processing IC and supports an easy to use I²C bus communication interface.

FEATURES

- Package type: surface mount
- Dimensions (L x W x H in mm): 3.95 x 3.95 x 0.75
- Integrated module with ambient light sensor, proximity sensor and signal conditioning IC
- Supply voltage range: 2.5 V to 3.6 V
- Communication via I²C interface
- I²C Bus H-level range: 1.7 V to 5 V
- Floor life: 168 h, MSL 3, acc. J-STD-020
- Low stand by current consumption: 1.5 µA
- Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

PROXIMITY FUNCTION

- · Built in infrared LED and photo-pin-diode for proximity function
- 16-bit effective resolution for proximity detection range ensures excellent cross talk immunity
- Programmable LED drive current from 10 mA to 200 mA (in 10 mA steps)
- Excellent ambient light suppression by signal modulation
- · Proximity distance up to 200 mm

AMBIENT LIGHT FUNCTION

- · Built in ambient light photo-pin-diode with close to human eye sensitivity characteristic
- 16-bit dynamic range for ambient light detection from 0.2 lx to 13 klx
- 100 Hz and 120 Hz flicker noise rejection

APPLICATIONS

- Proximity sensor for mobile devices (e.g. smart phones, touch phones, PDA, GPS) for touch screen locking, power saving, etc.
- Integrated ambient light function for display/keypad contrast control and dimming of mobile devices
- · Proximity/optical switch for consumer, computing and industrial devices and displays
- · Dimming control for consumer, computing and industrial displays

PRODUCT SUMMARY										
PART NUMBER	OPERATING RANGE	OPERATING VOLTAGE RANGE	I ² C BUS VOLTAGE RANGE	LED PULSE CURRENT ⁽¹⁾	AMBIENT LIGHT RANGE	AMBIENT LIGHT RESOLUTION	OUTPUT CODE			
	mm	V	V	mA	lux	lux				
VCNL4000	1 to 200	2.5 to 3.6	1.7 to 5	10 to 200	0.2 to 13 000	0.2	16 bit, I ² C			

Note

⁽¹⁾ Adjustable through I²C interface

** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

RoHS COMPLIANT

GREEN

(5-2008)

Vishay Semiconductors Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

ORDERING INFORMATION								
ORDERING CODE PACKAGING		VOLUME ⁽¹⁾	REMARKS					
VCNL4000-GS08	Tapa and roal	MOQ: 1800 pcs	- 3.95 mm x 3.95 mm x 0.75 mm					
VCNL4000-GS18	Tape and Teel	MOQ: 7000 pcs						

Note

⁽¹⁾ MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS ($T_{amb} = 25 \text{ °C}$, unless otherwise specified)										
PARAMETER	TEST CONDITION	SYMBOL	MIN.	MAX.	UNIT					
Supply voltage		V _{DD}	- 0.3	5.5	V					
Operation temperature range		T _{amb}	- 40	+ 85	°C					
Storage temperature range		T _{stg}	- 40	+ 100	°C					
Total power dissipation	T _{amb} ≤ 25 °C	P _{tot}		50	mW					
Junction temperature		Tj		100	°C					

BASIC CHARACTERIST	ICS (T _{amb} = 25 °C, unless o	therwise spe	ecified)			
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage			2.5		3.6	V
I ² C Bus H-level range			1.7		5	V
Current consumption	Standby current, no IRED-operation			1.5	2	μΑ
	2 measurements per second, IRED current 20 mA			4		μΑ
Current consumption proximity mode incl. IRED (averaged)	250 measurements per second, IRED current 20 mA			500		μA
	2 measurements per second, IRED current 200 mA			31		μA
	250 measurements per second, IRED current 200 mA			3.8		mA
	2 measurements per second averaging = 1			2.5		μA
Current consumption ambient	8 measurements per second averaging = 1			10		μA
light mode	2 measurements per second averaging = 64			160		μΑ
	8 measurements per second averaging = 64			635		μΑ
Ambient light resolution	Digital resolution (LSB count)			0.2		lx
Ambient light output when dark	E _V = 0 averaging = 64	E _V = 0 averaging = 64 0		5	counts	
Ambient light output	E _V = 100 lx averaging = 64			500		counts
I ² C clock rate range		f _{I2C}			3400	kHz

Short Distance Proximity/Ambient Light Sensor Vishay Semiconductors with I²C Bus Interface

CIRCUIT BLOCK DIAGRAM

TEST CIRCUIT

Note

 nc must not be electrically connected Pads 8 to 11 are only considered as solder pads

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 1 - Idle Current vs. Ambient Temperature

Vishay Semiconductors Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

Fig. 5 - Relative Radiant Intensity vs. Wavelength

Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

Fig. 7 - Relative Spectral Sensitivity vs. Wavelength

Fig. 8 - Relative Radiant Sensitivity vs. Angular Displacement

Fig. 10 - Relative Spectral Sensitivity vs. Wavelength

Fig. 11 - Relative Radiant Sensitivity vs. Angular Displacement

APPLICATION INFORMATION

VCNL4000 is a cost effective solution of proximity and ambient light sensor with I²C Bus interface. The standard serial digital interface is easy to access "Proximity Signal" and "Light intensity" without complex calculation and programming by external controller.

1. Application Circuit

Vishay Semiconductors Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

2. I²C Interface

The VCNL4000 contains twelve 8 bit registers for operation control, parameter setup and result buffering. All registers are accessible via I²C communication. Figure 13 shows the basic I²C communication with VCNL4000. The built in I²C interface is compatible with all I²C modes (standard, fast and high speed).

 I^2C H-level range = 1.7 V to 5 V.

Please refer to the I²C specification from NXP for details.

Fig. 13 - Send Byte/Receive Byte Protocol

Device Address

The VCNL4000 has a fix slave address for the host programming and accessing selection. The predefined 7 bit I^2C bus address is set to 0010 011 = 13h. The least significant bit (LSB) defines read or write mode. Accordingly the bus address is set to 0010 011x = 26h for write, 27h for read.

Register Addresses

VCNL4000 has twelve user accessible 8 bit registers. The register addresses are 80h (register #0) to 8Bh (register #11).

REGISTER FUNCTIONS

Register #0 Command Register

Register address = 80h

The register #0 is for starting ambient light or proximity measurements. This register contains 2 flag bits for data ready indication.

TABLE 1 -	TABLE 1 - COMMAND REGISTER #0										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0				
Config log	als data rdy	Prox. data rdy	als od	Prox. od	N/A	N/A	N/A				
Description											
Config log Read only bit. Value = 1											
als data rdy Read only bit. Value = 1 when ambient light measurement data is available in the result registers. This will be reset when one of the corresponding result registers (reg #5, reg #6) is read.						egisters. This bit s read.					
Prox. c	lata rdy	Read only bit. Va be re	lue = 1 when prox eset when one of	imity measuremer the corresponding	nt data is available g result registers (r	e in the result regis reg #7, reg #8) is r	sters. This bit will ead.				
R/W bit. Starts a single on-demand measurement for ambient light. If averaging is enabled, starts als od sequence of readings and stores the averaged result. Result is available at the end of conversion f reading in the registers #5(HB) and #6(LB).						abled, starts a conversion for					
Prox. od R/W bit. Starts a single on-demand measurement for proximity. Result is available at the end of conversion for reading in the registers #7(HB) and #						nd #8(LB).					

With setting bit 3 and bit 4 at the same write command, a simultaneously measurement of ambient light and proximity is done.

Register #1 Product ID Revision Register

Register address = 81h. This register contains information about product ID and product revision. Register data value of current revision = 11h.

TABLE 2 - PRODUCT ID REVISION REGISTER #1										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Produ	uct ID		Revision ID						
			Descr	iption						
Prod	uct ID	Developed with Mallor of								
Revision ID										

Register #2 without Function in Current Version

Register address = 82h.

Register #3 LED Current Setting for Proximity Mode

Register address = 83h. This register is to set the LED current value for proximity measurement.

The value is adjustable in steps of 10 mA from 0 mA to 200 mA.

This register also contains information about the used device fuse program ID.

TABLE 3 - IR LED CURRENT REGISTER #3										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Fuse prog ID IR LED current value										
Description										
Fuse p	orog ID	Informa	tion about fuse pr	Read of or	nly bits. ed for initial setup	/calibration of the	device.			
IR LED cu	R/W bits. IR LED current = Value (dec.) x 10 mA.IR LED current valueValid Range = 0 to 20d. e.g. 0 = 0 mA , 1 = 10 mA,, 20 = 200 mA (2 = 20 mA = DEFAULT)LED Current is limited to 200 mA for values higher as 20d.									

Register #4 Ambient Light Parameter Register

Register address = 84h.

TABLE 4 -	TABLE 4 - AMBIENT LIGHT PARAMETER REGISTER #4											
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0					
Cont. conv. mode		N/A		Auto offset compensation	Averaging function (number of measurements per run)							
			Desci	ription								
Bit 7 Enable = 1; Disable = 0 = DEFAULT Cont. conversion mode This function can be used for performing faster ambient light measurements. Please refer to application information chapter 3.3 for details about this function.						e refer to the						
Bi Auto offset c	t 3 compensation	In order to com With active auto o	R/W bit. Automatic offset compensation. Enable = 1 = DEFAULT Disable = 0 n order to compensate a technology, package or temperature related drift of the ambient light values there is a built in automatic offset compensation function. th active auto offset compensation the offset value is measured before each ambient light measurement and subtracted automatically from actual reading.									
Bit 0 t Averagin	o bit 2 g function	Bit values sets Number of c	R/W bits. Averaging function. the number of single conversions done during one measurement cycle. Result is the average value of all conversions. onversions = 2 ^{decimal_value} e.g. 0 = 1 conv., 1 = 2 conv, 2 = 4 conv.,7 = 128 conv. DEFAULT = 32 conv.									

Vishay Semiconductors Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

Register #5 and #6 Ambient Light Result Register

Register address = 85h and 86h. These registers are the result registers for ambient light measurement readings. The result is a 16 bit value. The high byte is stored in register #5 and the low byte in register #6.

TABLE 5 - AMBIENT LIGHT RESULT REGISTER #5										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Description									
Read only bits. High byte (15:8) of ambient light measurement result										

TABLE 6 - AMBIENT LIGHT RESULT REGISTER #6										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
	Description									
Read only bits. Low byte (7:0) of ambient light measurement result										

Register #7 and #8 Proximity Measurement Result Register

Register address = 87h and 88h. These registers are the result registers for proximity measurement readings. The result is a 16 bit value. The high byte is stored in register #7 and the low byte in register #8.

TABLE 7 - PROXIMITY RESULT REGISTER #7										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Description										
Read only bits. High byte (15:8) of proximity measurement result										

TABLE 8 - PROXIMITY RESULT REGISTER #8										
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0			
Description										
Read only bits. Low byte (7:0) of proximity measurement result										

Register #9 Proximity Measurement Signal Frequency

Register address = 89h.

TABLE 9 - PROXIMITY MEASUREMENT SIGNAL FREQUENCY #9									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
		N	/Α	Proximity frequency					
Description									
Bit 0 and 1 Proximity frequency		R/W bits. Setting the proximity IR test signal frequency. The proximity measurement is using a square IR signal as measurement signal. Four different values are possible: 00 = 3.125 MHz 01 = 1.5625 MHz 02 = 781.25 kHz (DEFAULT) 03 = 390.625 kHz							

Register #10 Proximity Modulator Timing Adjustment

Register address = 8Ah.

TABLE 10 - PROXIMITY MODULATOR TIMING ADJUSTMENT #10								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Modulation delay time			N/A		Modulation dead Time			
Description								
Modulation delay time A		R/W b Thi Also	/ bits. Setting a delay time between IR LED signal and IR input signal evaluation. This function is for compensation of delays from IR LED and IR photo diode. Iso in respect to the possibility for setting different proximity signal frequency. Correct adjustment is optimizing measurement signal level.					
R/W b Modulation dead Time		its. Setting a dead time in evaluation of IR signal at the slopes of the IR signal. This function is for reducing of possible disturbance effects. This function is reducing signal level and should be used carefully.						

Note

• The settings for best performance will be provided by Vishay. With first samples this is evaluated to: delay time = 4 and dead time = 1, with that register #10 should be programmed with: 129 (dez.)

Register #11 Ambient IR Light Level Register

Register address = 8Bh.

This register is not intended to be used by customer.

3. IMPORTANT APPLICATION HINTS AND EXAMPLES

3.1 Receiver standby mode

In standby mode the receiver has the lowest current consumption of about 1.6 µA. In this mode only the I²C interface is active. This is always valid, when there are no measurement demands for proximity and ambient light executed. Also the current sink for the IR-LED is inactive, so there is no need for changing register #3 (IR LED current).

3.2 Data Read

In order to get a certain register value, the register has to be addressed without data like shown in the following scheme. After this register addressing, the data from the addressed register is written after a subsequent read command.

The stop condition between these write and read sequences is not mandatory. It works also with a repeated start condition.

Note

• For reading out 2 (or more) subsequent registers like the result registers, it is not necessary to address each of the registers separately. After one read command the internal register counter is increased automatically and any subsequent read command is accessing the next register.

Example:read register #5 and #6:

Addressing:	command 26h 85h
Read register #5:	$command \ge 27h$
Read register #6:	$command \ge 27h$

Vishay Semiconductors Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

3.3 Continuous Conversion Mode in Ambient Light Measurement

In the following is a detail description of the function "continuous conversion" (bit 7 of register #4)

Standard mode (bit 7 of reg #4 = 0):

In standard mode the ambient light measurement is done during a fixed time frame of 100 ms. The single measurement itself takes actually only appr. 300 µs.

The following figures show examples of this measurement timing in standard mode using averaging function 2 and 8 as examples for illustration (possible values up to 128).

Fig. 15 - Ambient Light Measurement with Averaging = 2; Final Measurement Result = Average of these 2 Measurements

Fig. 16 - Ambient Light Measurement with Averaging = 8; Final Measurement Result = Average of these 8 Measurements

Note

• ≥ Independent of setting of averaging the result is available only after 100 ms.

Continuous conversion mode (bit7 of reg #4 = 1):

In continuous conversion mode the single measurements are done directly subsequent after each other. See following examples in figure 17 and 18

Fig. 17 - Ambient Light Measurement with Averaging = 2; using Continuous Conversion Mode

22318

Fig. 18 - Ambient Light Measurement with Averaging = 8; using Continuous Conversion Mode

PACKAGE DIMENSIONS in millimeters

Vishay Semiconductors Short Distance Proximity/Ambient Light Sensor with I²C Bus Interface

TAPE AND REEL DIMENSIONS in millimeters

Drawing-No.: 9.800-510301-4 Issue: prel; 02.12.09 22319

SOLDER PROFILE

Fig. 19 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label: Floor life: 168 h Conditions: $T_{amb} < 30$ °C, RH < 60 % Moisture sensitivity level 3, acc. to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 °C (+ 5 °C), RH < 5 %.

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Proximity Sensors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

01.001.5653.1 70.340.1028.0 70.360.2428.0 70.364.4828.0 70.810.1053.0 72.360.1628.0 73.363.6428.0 9221350022 980659-1 QT-12 E2EX10D1NN E2E-X14MD1-G E2E-X2D1-G E2EX2ME2N E2E-X3D1-N 10M E2E-X4MD1-G E2FMX1R5D12M E2K-F10MC1 5M EI1204TBOSL-6 EI5515NPAP BSA-08-25-08 IC08ANC15PO-K IMM2582C 25.161.3253.0 25.332.0653.1 25.352.0653.0 25.352.0753.0 25.523.3253.0 9151710023 922FS1.5C-A4P-Z774 SC606ABV0S30 SM952A126100LE A1220EUA-T F3S-A162-U CL18 QT-08L 34.110.0010.0 TL-C2MF1-M3-E4 IMM32188C IS2 IS31SE5000-UTLS2-TR 34.110.0021.0 34.110.0022.0 CA150-120VACDC VM18VA3000Q XS508BSCBL2 XS512BLNAM12 XS512BLNBL2 XS512BLPAL5 XS518B1MBU20