


www.vishay.com

Vishay Semiconductors

# Optocoupler, Phototransistor Output, with Base Connection in SOIC-8 Package





## DESCRIPTION

The VO205AT, VO206AT, VO207AT, VO208AT are optically coupled pairs with a gallium arsenide infrared LED and a silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between input and output. This family comes in a standard SOIC-8A small outline package for surface mounting which makes them ideally suited for high density application with limited space.

### **FEATURES**

- High BV<sub>CEO</sub>, 70 V
- Isolation test voltage, 4000 V<sub>RMS</sub>
- Material categorization:
   For definitions of compliance please see <a href="https://www.vishay.com/doc?99912">www.vishay.com/doc?99912</a>





COMPLIANT

#### AGENCY APPROVALS

- UL1577, file no. E52744 system code Y
- cUL file no. E52744, equivalent to CSA bulletin 5A
- DIN EN 60747-5-5 (VDE 0884-5) approved, contact customer service if this option is required

| ORDERING I    | NFORMATIC   | N |             |      |       |            |            |  |  |
|---------------|-------------|---|-------------|------|-------|------------|------------|--|--|
| v             | 0           | 2 | 0           | #    | Α     | T          | SIOC-8     |  |  |
|               |             |   | PART NUMBER |      |       |            | 6.1 mm     |  |  |
| AGENCY CERTIF | IED/PACKAGE |   | CTR (%)     |      |       |            |            |  |  |
| UL, cUL       |             |   | 40 to 80    | 63 t | o 125 | 100 to 200 | 160 to 320 |  |  |
| SOIC-8        |             |   | VO205AT     | VO2  | :06AT | VO207AT    | VO208AT    |  |  |

| ABSOLUTE MAXIMUM RATINGS (Ta                 | <sub>amb</sub> = 25 °C, unless o | therwise specif       | ied)          |           |
|----------------------------------------------|----------------------------------|-----------------------|---------------|-----------|
| PARAMETER                                    | TEST CONDITION                   | SYMBOL                | VALUE         | UNIT      |
| INPUT                                        |                                  |                       |               |           |
| Peak reverse voltage                         |                                  | $V_{R}$               | 6             | V         |
| Forward continuous current                   |                                  | l <sub>F</sub>        | 60            | mA        |
| Peak forward current                         | 1 µs, 300 pps                    | I <sub>FM</sub>       | 1             | Α         |
| Power dissipation                            |                                  | P <sub>diss</sub>     | 90            | mW        |
| Derate linearly from 25 °C                   |                                  |                       | 1.2           | mW/°C     |
| OUTPUT                                       |                                  |                       |               |           |
| Collector emitter breakdown voltage          |                                  | BV <sub>CEO</sub>     | 70            | V         |
| Emitter collector breakdown voltage          |                                  | BV <sub>ECO</sub>     | 7             | V         |
| Collector-base breakdown voltage             |                                  | $BV_{CBO}$            | 70            | V         |
| I <sub>Cmax. DC</sub>                        |                                  | I <sub>Cmax. DC</sub> | 50            | mA        |
| I <sub>Cmax</sub> .                          | t < 1 ms                         | I <sub>Cmax</sub> .   | 100           | mA        |
| Power dissipation                            |                                  | $P_{diss}$            | 150           | mW        |
| Derate linearly from 25 °C                   |                                  |                       | 2             | mW/°C     |
| COUPLER                                      |                                  |                       |               |           |
| Isolation test voltage                       |                                  | $V_{ISO}$             | 4000          | $V_{RMS}$ |
| Total package dissipation (LED and detector) |                                  | P <sub>tot</sub>      | 240           | mW        |
| Derate linearly from 25 °C                   |                                  | <u> </u>              | 3.3           | mW/°C     |
| Operating temperature                        |                                  | T <sub>amb</sub>      | - 40 to + 100 | °C        |
| Storage temperature                          |                                  | T <sub>stg</sub>      | - 40 to + 150 | °C        |
| Soldering time                               | at 260 °C                        | T <sub>sld</sub>      | 10            | S         |

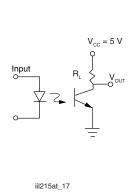
#### Note

<sup>•</sup> Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability.



### www.vishay.com

## Vishay Semiconductors


| <b>ELECTRICAL CHARACTERISTICS</b> (T <sub>amb</sub> = 25 °C, unless otherwise specified) |                                           |      |                    |      |      |      |      |  |
|------------------------------------------------------------------------------------------|-------------------------------------------|------|--------------------|------|------|------|------|--|
| PARAMETER                                                                                | TEST CONDITION                            | PART | SYMBOL             | MIN. | TYP. | MAX. | UNIT |  |
| INPUT                                                                                    |                                           |      |                    |      |      |      |      |  |
| Forward voltage                                                                          | $I_F = 10 \text{ mA}$                     |      | $V_{F}$            |      | 1.3  | 1.5  | ٧    |  |
| Reverse current                                                                          | $V_R = 6 V$                               |      | I <sub>R</sub>     |      | 0.1  | 100  | μΑ   |  |
| Capacitance                                                                              | $V_R = 0 V$                               |      | Co                 |      | 13   |      | pF   |  |
| OUTPUT                                                                                   | OUTPUT                                    |      |                    |      |      |      |      |  |
| Collector emitter breakdown voltage                                                      | $I_{C} = 100  \mu A$                      |      | BV <sub>CEO</sub>  | 70   |      |      | V    |  |
| Emitter collector breakdown voltage                                                      | $I_E = 10 \mu A$                          |      | BV <sub>ECO</sub>  | 7    | 10   |      | V    |  |
| Collector base breakdown voltage                                                         | $I_{C} = 100 \mu A$                       |      | BV <sub>CBO</sub>  | 100  |      |      | ٧    |  |
| Collector base current                                                                   |                                           |      | I <sub>CBO</sub>   |      |      | 1    | nA   |  |
| Emitter base current                                                                     |                                           |      | I <sub>EBO</sub>   |      |      | 1    | nA   |  |
| Collector emitter leakage current                                                        | V <sub>CE</sub> = 10 V                    |      | I <sub>CEO</sub>   |      | 5    | 50   | nA   |  |
| Saturation voltage, collector emitter                                                    | $I_C = 2 \text{ mA}, I_F = 10 \text{ mA}$ |      | V <sub>CEsat</sub> |      |      | 0.4  | V    |  |
| COUPLER                                                                                  |                                           |      |                    |      |      |      |      |  |
| Capacitance, input to output                                                             |                                           |      | C <sub>IO</sub>    |      | 0.5  |      | pF   |  |

#### Note

• Minimum and maximum values were tested requierements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements.

| CURRENT TRANSFER RATIO         |                                               |         |        |      |      |      |      |  |
|--------------------------------|-----------------------------------------------|---------|--------|------|------|------|------|--|
| PARAMETER                      | TEST CONDITION                                | PART    | SYMBOL | MIN. | TYP. | MAX. | UNIT |  |
| I <sub>C</sub> /I <sub>F</sub> | I <sub>F</sub> = 10 mA, V <sub>CE</sub> = 5 V | VO205AT | CTR    | 40   |      | 80   | %    |  |
|                                |                                               | VO206AT | CTR    | 63   |      | 125  | %    |  |
|                                |                                               | VO207AT | CTR    | 100  |      | 200  | %    |  |
|                                |                                               | VO208AT | CTR    | 160  |      | 320  | %    |  |

| SWITCHING CHARACTERISTICS |                                                                   |      |                  |      |      |      |      |  |
|---------------------------|-------------------------------------------------------------------|------|------------------|------|------|------|------|--|
| PARAMETER                 | TEST CONDITION                                                    | PART | SYMBOL           | MIN. | TYP. | MAX. | UNIT |  |
| Turn-on time              | $I_{C} = 2 \text{ mA}, R_{L} = 100 \Omega, V_{CC} = 10 \text{ V}$ |      | t <sub>on</sub>  |      | 3    |      | μs   |  |
| Turn-off time             | $I_C$ = 2 mA, $R_L$ = 100 $\Omega$ , $V_{CC}$ = 10 $V$            |      | t <sub>off</sub> |      | 3    |      | μs   |  |
| Rise time                 | $I_C$ = 2 mA, $R_L$ = 100 $\Omega$ , $V_{CC}$ = 10 $V$            |      | t <sub>r</sub>   |      | 3    |      | μs   |  |
| Fall time                 | $I_C = 2$ mA, $R_L = 100 \Omega$ , $V_{CC} = 10 V$                |      | t <sub>f</sub>   |      | 2    |      | μs   |  |



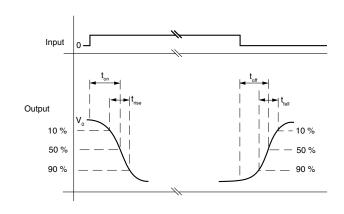
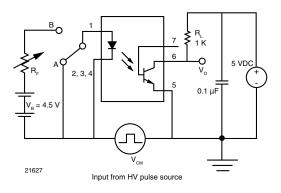




Fig. 1 Switching Test Circuit

## VO205AT, VO206AT, VO207AT, VO208AT

## Vishay Semiconductors

| COMMON MODE TRANSIENT IMMUNITY               |                                                                                                  |                 |      |      |      |      |  |  |  |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------|------|------|------|------|--|--|--|
| PARAMETER                                    | TEST CONDITION                                                                                   | SYMBOL          | MIN. | TYP. | MAX. | UNIT |  |  |  |
| Common mode transient immunity at logic high | $\begin{split} V_{CM} = 1000 \ V_{P\text{-}P}, \ R_L = 1 \ k\Omega, \\ I_F = 0 \ mA \end{split}$ | C <sub>MH</sub> |      | 5000 |      | V/µs |  |  |  |
| Common mode transient immunity at logic low  | $V_{CM} = 1000 \ V_{P-P}, \ R_L = 1 \ k\Omega,$ $I_F = 10 \ mA$                                  | C <sub>ML</sub> |      | 5000 |      | V/µs |  |  |  |



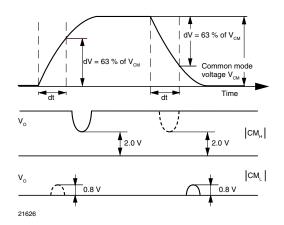



Fig. 1 - Test Circuit for Common Mode Transient Immunity

| SAFETY AND INSULATION RATINGS                        |                |                   |      |           |      |                  |  |  |
|------------------------------------------------------|----------------|-------------------|------|-----------|------|------------------|--|--|
| PARAMETER                                            | TEST CONDITION | SYMBOL            | MIN. | TYP.      | MAX. | UNIT             |  |  |
| Climatic classification (according to IEC 68 part 1) |                |                   |      | 40/100/21 |      |                  |  |  |
| Polution degree                                      |                |                   |      | 2         |      |                  |  |  |
| Comparative tracking index                           |                | CTI               | 175  |           | 399  |                  |  |  |
| Isolation test voltage                               | 1 s            | V <sub>ISO</sub>  | 4000 |           |      | V <sub>RMS</sub> |  |  |
| Peak transient overvoltage                           |                | V <sub>IOTM</sub> | 6000 |           |      | V                |  |  |
| Peak insulation voltage                              |                | V <sub>IORM</sub> | 560  |           |      | V                |  |  |
| Resistance (input to output)                         |                | R <sub>IO</sub>   |      | 100       |      | GΩ               |  |  |
| Safety rating - power output                         |                | P <sub>SO</sub>   |      |           | 350  | mW               |  |  |
| Safety rating - input current                        |                | I <sub>SI</sub>   |      |           | 150  | mA               |  |  |
| Safety rating - temperature                          |                | T <sub>SI</sub>   |      |           | 165  | °C               |  |  |
| External creepage distance                           |                |                   | 4    |           |      | mm               |  |  |
| External clearance distance                          |                |                   | 4    |           |      | mm               |  |  |
| Internal creepage distance                           |                |                   | 3.3  |           |      | mm               |  |  |
| Insulation thickness                                 |                |                   | 0.2  |           |      | mm               |  |  |

#### Note

As per IEC 60747-5-2, §7.4.3.8.1, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with
the safety ratings shall be ensured by means of protective circuits.

## Vishay Semiconductors

## **TYPICAL CHARACTERISTICS** (T<sub>amb</sub> = 25 °C, unless otherwise specified)

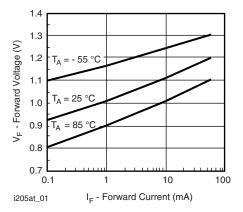



Fig. 2 - Forward Voltage vs. Forward Current

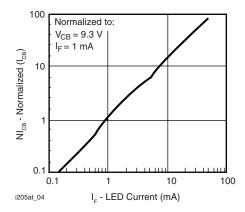



Fig. 5 - Normalized Collector-Base Photocurrent vs. LED Current

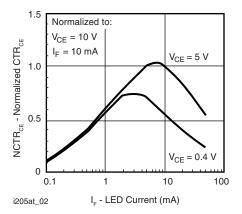



Fig. 3 - Normalized Non-Saturated and Saturated CTR $_{\rm CE}$  vs. LED Current

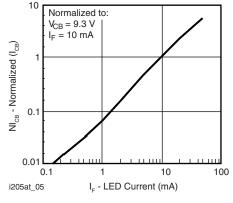



Fig. 6 - Normalized Collector-Base Photocurrent vs. LED Current

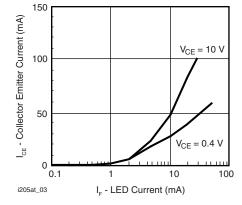



Fig. 4 - Collector Emitter Current vs. LED Current

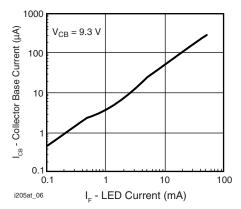
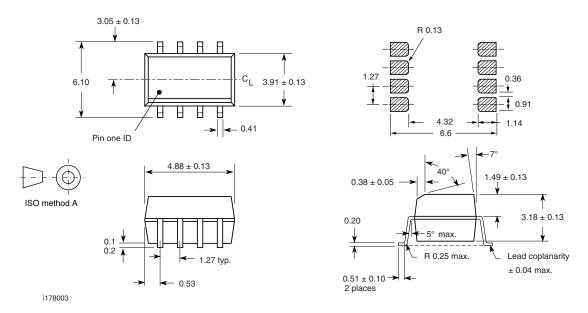




Fig. 7 - Collector Base Photocurrent vs. LED Current



## Vishay Semiconductors

### **PACKAGE DIMENSIONS** in millimeters



### **PACKAGE MARKING** (example of VO207AT)



### TAPE AND REEL PACKAGING

Dimensions in millimeters

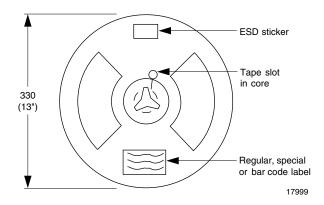



Fig. 8 - Tape and Reel Shipping Medium (EIA-481, revision A, and IEC 60286), 2000 units per reel

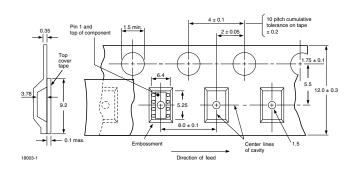



Fig. 9 - Tape Dimensions, 2000 Parts per Reel





Vishay Semiconductors

# Footprint and Schematic Information for VO205AT, VO206AT, VO207AT, VO208AT

The footprint and schematic symbols for the following parts can be accessed using the associated links. They are available in Eagle, Altium, KiCad, OrCAD / Allegro, Pulsonix, and PADS.

Note that the 3D models for these parts can be found on the Vishay product page.

| PART NUMBER | FOOTPRINT / SCHEMATIC                          |
|-------------|------------------------------------------------|
| VO205AT     | www.snapeda.com/parts/VO205AT/Vishay/view-part |
| VO206AT     | www.snapeda.com/parts/VO206AT/Vishay/view-part |
| VO207AT     | www.snapeda.com/parts/VO207AT/Vishay/view-part |
| VO208AT     | www.snapeda.com/parts/VO208AT/Vishay/view-part |

For technical issues and product support, please contact optocoupleranswers@vishay.com.





## **Legal Disclaimer Notice**

Vishay

## **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Transistor Output Optocouplers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

LTV-814S-TA LTV-824HS LTV-852S 66095-001 6N136-X017T MCT6-X007 MOC8101-X017T PS2561-1-A PS2561A-1-W-A PS2561B-1-L-A PS2561L-1-V-A MRF658 IL755-1X007 ILD74-X001 ILQ615-2X017 ILQ615-3X016 LDA102S LDA110S PS2561-1-V-W-A PS2561AL-1-V-A PS2561L1-1-L-A PS2701A-1-F3-P-A PS2801-1-F3-P-A PS2911-1-L-AX CNY17-2X017 CNY17-4X001 CNY17-4X017 CNY17F-1X007 CNY17F-2X017 CNY17F-4X001 CNY17G-1 LTV-214 LTV-702VB LTV-733S LTV-816S-TA LTV-825S TCET1113 TCET2100 4N25-X007T IL215AT ILQ2-X007 VOS615A-2T WPPC-A11066AA WPPC-A11066AD WPPC-A11084ASS WPPC-A21068AA WPPC-D11066AA WPPC-D21068ED WPPC-D410616EA WPPC-D410616ED