# Low Profile, 2.5 A Output Current IGBT and MOSFET Driver 



## DESCRIPTION

The VOL3120 consists of an infrared light emitting diode optically coupled to an integrated circuit with a power output stage. This optocoupler is ideally suited for driving power IGBTs and MOSFETs used in motor control and solar inverter applications. The high operating voltage range of the output stage provides the drive voltages required by gate controlled devices. The voltage and current supplied by this optocoupler makes it ideally suited for directly driving high power IGBTs with ratings up to $1000 \mathrm{~V} / 100 \mathrm{~A}$. The low profile and small footprint of the VOL3120 makes it an ideal choice for applications where board space and component height are at a premium, while still offering a high degree of isolation performance.

## FEATURES

- 2.5 A minimum peak output current
- $48 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode rejection

- Industrial temperature range: $-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$
- Wide operating $\mathrm{V}_{\mathrm{Cc}}$ range: 15 V to 32 V

RoHS COMPLANT halogen FREE

- Uaterial

```912
``` compliance please see www.vishay.com/doc?99912

\section*{APPLICATIONS}
- Isolated IGBT / MOSFET gate driver
- AC and brushless DC motor drives
- Induction stove top
- Industrial inverters
- Switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

\section*{AGENCY APPROVALS}

The safety application model number covering all products in this datasheet is VOL3120. This model number should be used when consulting safety agency documents.
- UL1577
- cUL
- CQC
- DIN EN 60747-5-5 (VDE 0884) and reinforced insulation rating available with option "1"

ORDERING INFORMATION

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{ABSOLUTE MAXIMUM RATINGS ( \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\), unless otherwise specified)} \\
\hline PARAMETER & CONDITIONS & SYMBOL & VALUE & UNIT \\
\hline \multicolumn{5}{|l|}{INPUT} \\
\hline Input forward current & & \(\mathrm{I}_{\mathrm{F}}\) & 25 & mA \\
\hline Peak transient input current & < 1 us pulse width, 300 pps & \(\mathrm{I}_{\text {F(TRAN })}\) & 1 & A \\
\hline Reverse input voltage & & \(\mathrm{V}_{\mathrm{R}}\) & 5 & V \\
\hline Output power dissipation & & \(\mathrm{P}_{\text {diss }}\) & 40 & mW \\
\hline LED junction temperature & & \(\mathrm{T}_{\mathrm{j}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{5}{|l|}{OUTPUT} \\
\hline High peak output current \({ }^{(1)}\) & & \(\mathrm{I}_{\text {OH(PEAK }}\) & 2.5 & A \\
\hline Low peak output current \({ }^{(1)}\) & & IoL(PEAK) & 2.5 & A \\
\hline Supply voltage & & \(\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\mathrm{EE}}\right)\) & 0 to 35 & V \\
\hline Output voltage & & \(\mathrm{V}_{\text {O(PEAK) }}\) & 0 to \(\mathrm{V}_{\mathrm{CC}}\) & V \\
\hline Output power dissipation & & \(\mathrm{P}_{\text {diss }}\) & 220 & mW \\
\hline Output junction temperature & & \(\mathrm{T}_{\mathrm{j}}\) & 125 & \({ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{5}{|l|}{OPTOCOUPLER} \\
\hline Storage temperature range & & \(\mathrm{T}_{\text {stg }}\) & -55 to +150 & \({ }^{\circ} \mathrm{C}\) \\
\hline Ambient operating temperature range & & \(\mathrm{T}_{\text {amb }}\) & -40 to +110 & \({ }^{\circ} \mathrm{C}\) \\
\hline Total power dissipation & & \(\mathrm{P}_{\text {tot }}\) & 260 & mW \\
\hline Lead solder temperature & For \(10 \mathrm{~s}, 1.6 \mathrm{~mm}\) below seating plane & \(\mathrm{T}_{\text {sld }}\) & 260 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Notes}
- Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute maximum ratings for extended periods of the time can adversely affect reliability
\({ }^{(1)}\) Maximum pulse width \(=10 \mu \mathrm{~s}\), maximum duty cycle \(=0.2 \%\). This value is intended to allow for component tolerances for designs with \(\mathrm{I}_{\mathrm{O}}\) peak minimum \(=2.5 \mathrm{~A}\). See applications section for additional details on limiting \(\mathrm{I}_{\mathrm{OH}}\) peak


Fig. 1 - Safety Power Dissipation vs. Ambient Temperature


Fig. 2 - Safety Input Current vs. Ambient Temperature

VOL3120
Vishay Semiconductors
\begin{tabular}{|l|c|c|c|c|}
\hline RECOMMENDED OPERATING CONDITIONS \\
\hline PARAMETER & SYMBOL & MIN. & MAX. & UNIT \\
\hline Power supply voltage & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\) & 15 & 32 & V \\
\hline Input LED current (on) & \(\mathrm{I}_{\mathrm{F}}\) & 10 & - & mA \\
\hline Input voltage (off) & \(\mathrm{V}_{\mathrm{F}(\text { OFF })}\) & -3 & 0.8 & V \\
\hline Operating temperature & \(\mathrm{T}_{\mathrm{amb}}\) & -40 & +110 & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}


Fig. 3 - Power Dissipation vs. Ambient Temperature

\section*{ELECTRICAL CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITION & SYMBOL & MIN. & TYP. & MAX. & UNIT \\
\hline \multirow[b]{2}{*}{High level output current} & \(\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}\right)\) & \(\mathrm{IOH}^{\text {l }}\) & 0.5 & - & - & A \\
\hline & \(\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\text {CC }}-15 \mathrm{~V}\right)\) & IOH & 2.5 & - & - & A \\
\hline \multirow[t]{2}{*}{Low level output current} & \(\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\mathrm{EE}}+2.5 \mathrm{~V}\right)\) & \(\mathrm{l}_{\mathrm{OL}}\) & 0.5 & - & - & A \\
\hline & \(\mathrm{V}_{\mathrm{O}}=\left(\mathrm{V}_{\text {EE }}+15 \mathrm{~V}\right)\) & l L & 2.5 & - & - & A \\
\hline High level output voltage & \(\mathrm{I}_{0}=-100 \mathrm{~mA}\) & \(\mathrm{V}_{\mathrm{OH}}\) & \(\mathrm{V}_{\mathrm{CC}}-4\) & - & - & V \\
\hline Low level output voltage & \(\mathrm{l}_{\mathrm{O}}=100 \mathrm{~mA}\) & \(\mathrm{V}_{\text {OL }}\) & - & 0.2 & 0.5 & V \\
\hline High level supply current & Output open, \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) to 16 mA & \(\mathrm{I}_{\mathrm{COH}}\) & - & - & 2.5 & mA \\
\hline Low level supply current & Output open, \(\mathrm{V}_{\mathrm{F}}=-3 \mathrm{~V}\) to +0.8 V & \(\mathrm{I}_{\mathrm{CLL}}\) & - & - & 2.5 & mA \\
\hline Threshold input current low to high & \(\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}\) & IFLH & - & 3.4 & 8 & mA \\
\hline Threshold input voltage high to low & & \(\mathrm{V}_{\text {FHL }}\) & 0.8 & - & - & V \\
\hline Input forward voltage & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & \(\mathrm{V}_{\mathrm{F}}\) & 1 & 1.36 & 1.6 & V \\
\hline Temperature coefficient of forward voltage & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & \(\Delta \mathrm{V}_{\mathrm{F}} / \Delta \mathrm{T}_{\text {amb }}\) & - & -1.4 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Input reverse breakdown voltage & \(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}\) & \(V_{B R}\) & 5 & - & - & V \\
\hline Input capacitance & \(\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}\) & \(\mathrm{C}_{\text {IN }}\) & - & 45 & - & pF \\
\hline \multirow[t]{2}{*}{UVLO threshold} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}} \geq 5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\)} & \(\mathrm{V}_{\text {UVLO+ }}\) & 11 & - & 13.5 & V \\
\hline & & V \({ }_{\text {UVLO- }}\) & 9.5 & - & 12 & V \\
\hline UVLO hysteresis & & UVLOHYS & - & 1.6 & - & V \\
\hline Capacitance (Input to Output) & \(\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}\) & \(\mathrm{C}_{10}\) & - & 0.9 & - & pF \\
\hline
\end{tabular}

\section*{Note}
- Minimum and maximum values were tested over recommended operating conditions \(\left(T_{a m b}=-40^{\circ} \mathrm{C}\right.\) to \(+110{ }^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=10 \mathrm{~mA}\) to 16 mA , \(\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}=-3 \mathrm{~V}\) to \(0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\) to \(32 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\) ground) unless otherwise specified. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements. All typical values were measured at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\) and with \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=32 \mathrm{~V}\)

VOL3120

\section*{SWITCHING CHARACTERISTICS}
\begin{tabular}{|l|r|c|c|c|c|}
\hline PARAMETER & TEST CONDITION & SYMBOL & MIN. & TYP. & MAX. \\
\hline UNIT \\
\hline Propagation delay time to logic low output & \(R_{g}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}\), duty cycle \(=50 \%\) & \(\mathrm{t}_{\text {PHL }}\) & 0.1 & 0.25 & 0.5 \\
\hline Propagation delay time to logic high output & \(\mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}\), duty cycle \(=50 \%\) & \(\mathrm{t}_{\text {PLH }}\) & 0.1 & 0.25 & 0.5 \\
\hline Pulse width distortion & \(\mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}\), duty cycle \(=50 \%\) & \(\mu \mathrm{~s}\) \\
\hline Rise time & \(\mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}\), duty cycle \(=50 \%\) & \(\mathrm{t}_{\mathrm{r}}\) & - & 0.1 & - \\
\hline Fall time & \(\mathrm{R}_{\mathrm{g}}=10 \Omega, \mathrm{C}_{\mathrm{g}}=10 \mathrm{nF}, \mathrm{f}=10 \mathrm{kHz}\), duty cycle \(=50 \%\) & \(\mu \mathrm{~s}\) \\
\hline UVLO turn on delay & \(\mathrm{V}_{\mathrm{O}}>5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & - & - & 0.3 & \(\mu \mathrm{~s}\) \\
\hline UVLO turn off delay & \(\mathrm{V}_{\mathrm{O}}<5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & - & 0.1 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Note}
- Minimum and maximum values were tested over recommended operating conditions \(\left(T_{a m b}=-40^{\circ} \mathrm{C}\right.\) to \(+110{ }^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=10 \mathrm{~mA}\) to 16 mA , \(\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}=-3 \mathrm{~V}\) to \(0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\) to \(32 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\) ground) unless otherwise specified. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements. All typical values were measured at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\) and with \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=32 \mathrm{~V}\)


Fig. \(4-t_{\text {PLH }}, t_{\text {PHL }}, t_{r}\) and \(t_{f}\) Test Circuit and Waveforms
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline COMMON MODE TRANSIENT IMMUNITY \\
\hline PARAMETER & TEST CONDITION & SYMBOL & MIN. & TYP. & MAX. & UNIT \\
\hline \begin{tabular}{l} 
Common mode transient immunity at \\
logic high output
\end{tabular} & \begin{tabular}{c}
\(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) to 16 mA, \\
\(\mathrm{~V}_{\mathrm{CM}}=1500 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=32 \mathrm{~V}\)
\end{tabular} & \(\left|C M_{\mathrm{H}}\right|\) & 48 & - & - & \(\mathrm{kV} / \mathrm{Ms}\) \\
\hline \begin{tabular}{l} 
Common mode transient immunity at \\
logic low output
\end{tabular} & \begin{tabular}{c}
\(\mathrm{T}_{\mathrm{amb}}=25^{\circ}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{CC}}=32 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}\)
\end{tabular} & \(\left|C M_{\mathrm{L}}\right|\) & 48 & - & - & \(\mathrm{kV} / \mathrm{\mu s}\) \\
\hline
\end{tabular}

\section*{Note}
- Minimum and maximum values were tested over recommended operating conditions \(\left(\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}\right.\) to \(+110{ }^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}(\mathrm{ON})}=10 \mathrm{~mA}\) to 16 mA , \(\mathrm{V}_{\mathrm{F}(\mathrm{OFF})}=-3 \mathrm{~V}\) to \(0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\) to \(32 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\) ground) unless otherwise specified. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information only and are not part of the testing requirements. All typical values were measured at \(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\) and with \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=32 \mathrm{~V}\).


Fig. 5-CMR Test Circuit and Waveforms

VOL3120
Vishay Semiconductors
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{SAFETY AND INSULATION RATINGS} \\
\hline PARAMETER & TEST CONDITION & SYMBOL & VALUE & UNIT \\
\hline Climatic classification & According to IEC 68 part 1 & & 40/110/21 & \\
\hline Comparative tracking index & & CTI & 175 & \\
\hline Maximum rated withstanding isolation voltage & \(\mathrm{t}=1\) min & \(\mathrm{V}_{\text {ISO }}\) & 5300 & \(\mathrm{V}_{\text {RMS }}\) \\
\hline Maximum transient isolation voltage & & \(\mathrm{V}_{\text {IOTM }}\) & 8000 & V \\
\hline Maximum repetitive peak isolation voltage & & VIORM & 1050 & V \\
\hline \multirow{2}{*}{Isolation resistance} & \(\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DC}}=500 \mathrm{~V}\) & \(\mathrm{R}_{10}\) & \(\geq 10^{12}\) & \(\Omega\) \\
\hline & \(\mathrm{T}_{\text {amb }}=100^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DC}}=500 \mathrm{~V}\) & \(\mathrm{R}_{10}\) & \(\geq 10^{11}\) & \(\Omega\) \\
\hline Output safety power & & Pso & 900 & mW \\
\hline Input safety current & & \(\mathrm{I}_{\mathrm{s}}\) & 250 & mA \\
\hline Safety temperature & & Ts & 175 & \({ }^{\circ} \mathrm{C}\) \\
\hline Creepage distance & & & \(\geq 8\) & mm \\
\hline Clearance distance & & & \(\geq 8\) & mm \\
\hline Insulation thickness & & DTI & \(\geq 0.4\) & mm \\
\hline Input to output test voltage, method B & \(\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR }}, 100 \%\) production test with \(\mathrm{t}_{\mathrm{M}}=1 \mathrm{~s}\), partial discharge \(<5 \mathrm{pC}\) & \(V_{P R}\) & 1969 & \(V_{\text {peak }}\) \\
\hline Input to output test voltage, method A & \(\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}}, 100 \%\) production test with \(\mathrm{t}_{\mathrm{M}}=10 \mathrm{~s}\), partial discharge \(<5 \mathrm{pC}\) & \(V_{P R}\) & 1680 & \(V_{\text {peak }}\) \\
\hline \multicolumn{2}{|l|}{Environment (pollution degree in accordance to DIN VDE 0109)} & & 2 & \\
\hline
\end{tabular}

\section*{Note}
- As per IEC 60747-5-5, § 7.4.3.8.2, this optocoupler is suitable for "safe electrical insulation" only within the safety ratings. Compliance with the safety ratings shall be ensured by means of protective circuits.

TYPICAL CHARACTERISTICS \(\left(\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\right.\), unless otherwise specified)


Fig. 6 - Forward Current vs. Forward Voltage


Fig. 7 - Output Voltage vs. Forward Current


Fig. 8 - Threshold Current vs. Ambient Temperature


Fig. 9 - High Level Output Voltage vs. Ambient Temperature


Fig. 10 - Low Level Output Voltage vs. Ambient Temperature


Fig. 11 - High Level Voltage Drop vs. High Level Output Current


Fig. 12 - Low Level Voltage Drop vs. Low Level Output Current


Fig. 13 - Propagation Delay vs. Forward Current


Fig. 14 - Propagation Delay vs. Ambient Temperature


Fig. 15 - Propagation Delay vs. Supply Voltage


Fig. 16 - Propagation Delay vs. Load Resistance


Fig. 17 - Propagation Delay vs. Load Capacitance


Fig. 18 - Supply Current vs. Supply Voltage


Fig. 19 - Supply Current vs. Ambient Temperature

PACKAGE DIMENSIONS (in millimeters)


Fig. 20 - Package Drawing

\section*{PACKAGE MARKING}


Fig. 21 - Example of VOL3120-X001T

\section*{Notes}
- "YWW" is the date code marking ( \(\mathrm{Y}=\) year code, WW = week code)
- "X1" is only marked on option "1" parts
- - Tape and reel suffix (T) is not part of the package marking

\section*{PACKING INFORMATION (tape and reel)}


Fig. 22 - Tape and Reel Shipping Medium


Note:
Section Y - Y
1. Cumulative tolerance of 10 spocket holes is \(\pm 0.20\).

Fig. 23 - Tape and Reel Packing (2000 pieces on reel)

\section*{SOLDER PROFILE}


Fig. 24 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

\section*{HANDLING AND STORAGE CONDITIONS}

ESD level: HBM class 2
Floor life: unlimited
Conditions: \(\mathrm{T}_{\mathrm{amb}}<30^{\circ} \mathrm{C}, \mathrm{RH}<85 \%\)
Moisture sensitivity level 1, according to J-STD-020

\section*{Disclaimer}

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

\section*{X-ON Electronics}

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Gate Drivers category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
\(\underline{00053 \mathrm{P} 0231} 5695657.404 .7355 .5\) LT4936 57.904 .0755 .05882900001 00600P0005 00-9050-LRPP 00-9090-RDPP 5951900000 01-1003W-10/32-15 0131700000 00-2240 LTP70N06 LVP640 5J0-1000LG-SIL LY1D-2-5S-AC120 LY2-US-AC240 LY3-UA-DC24 00576P0020 00600P0010 LZN4-UA-DC12 LZNQ2M-US-DC5 LZNQ2-US-DC12 LZP40N10 00-8196-RDPP 00-8274-RDPP 00-8275RDNP 00-8722-RDPP 00-8728-WHPP 00-8869-RDPP 00-9051-RDPP 00-9091-LRPP 00-9291-RDPP 0207100000 020740000060100564 \(\underline{01312} \underline{0134220000} \underline{60713816} \underline{\mathrm{M} 15730061} \underline{61161-90} \underline{61278-0020}\) 6131-204-23149P 6131-205-17149P 6131-209-15149P 6131-218-17149P 6131-220-21149P 6131-260-2358P 6131-265-11149P```

