High Performance Schottky Rectifier New Generation 3, D-61 Package, 2×55 A

D-61-8
VS-115CNQ015ASMPbF

D-61-8-SM

VS-115CNQ015ASLPbF

D-61-8-SL

FEATURES

- $125^{\circ} \mathrm{C} \mathrm{T}_{\mathrm{J}}$ operation $\left(\mathrm{V}_{\mathrm{R}}<5 \mathrm{~V}\right)$
- Center tap module
- Optimized for OR-ing applications
- Ultralow forward voltage drop
- High frequency operation
- High power discrete
- Guard ring for enhanced ruggedness and long term reliability
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- New fully transfer-mold low profile, small footprint, high current package
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

* This datasheet provides information about parts that are RoHS-compliant and/or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information/tables in this datasheet for details.

DESCRIPTION

The center tap Schottky rectifier module has been optimized for ultra low forward voltage drop specifically for the OR-ing of parallel power supplies. The proprietary barrier technology allows for reliable operation up to $125{ }^{\circ} \mathrm{C}$ junction temperature. Typical applications are in parallel switching power supplies, converters, reverse battery protection, and redundant power subsystems.

PRODUCT SUMMARY	
Package	$\mathrm{D}-61-8, \mathrm{D}-61-8-\mathrm{SM}, \mathrm{D}-61-8-\mathrm{SL}$
$\mathrm{I}_{\mathrm{F}(\mathrm{AV}}$	$2 \times 55 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}$	15 V
$\mathrm{~V}_{\mathrm{F}}$ at I_{F}	0.37 V
I_{RM} max.	1200 mA at $100^{\circ} \mathrm{C}$
T_{J} max.	$125^{\circ} \mathrm{C}$
Diode variation	Common cathode
E_{AS}	54 mJ

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Rectangular waveform	110	A
$\mathrm{~V}_{\mathrm{RRM}}$		15	V
$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	5050	A
$\mathrm{~V}_{\mathrm{F}}$	$55 \mathrm{~A}_{\mathrm{pk}}, \mathrm{T}_{J}=75^{\circ} \mathrm{C}$ (per leg)	0.33	V
$\mathrm{~T}_{\mathrm{J}}$	Range	-55 to +125	${ }^{\circ} \mathrm{C}$

VOLTAGE RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	VS-115CNQ015APbF	UNITS	
Maximum DC reverse voltage	V_{R}	$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	15	V	
Maximum working peak reverse voltage	$\mathrm{V}_{\mathrm{RWM}}$	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$	5		

ABSOLUTE MAXIMUM RATINGS

PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average forward current See fig. 5	per leg	$\mathrm{I}_{\text {(}}$ (AV)	50% duty cycle at $\mathrm{T}_{\mathrm{C}}=112^{\circ} \mathrm{C}$, rectangular waveform		55	A	
	per device				110		
Maximum peak one cycle non-repetitive surge current per leg See fig. 7		$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse	Following any rated load condition and with rated $\mathrm{V}_{\text {RRM }}$ applied	5050	A	
		10 ms sine or 6 ms rect. pulse	830				
Non-repetitive avalanche energy per leg			$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{AS}}=2 \mathrm{~A}, \mathrm{~L}=4.5 \mathrm{mH}$		54	mJ
Repetitive avalanche current per leg		$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $\mathrm{V}_{\mathrm{A}}=3 \times \mathrm{V}_{\mathrm{R}}$ typical		2	A	

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL		DITIONS	VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	55 A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	0.37	V
		110 A		0.46	
		55 A	$\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}$	0.33	
		110 A		0.43	
Maximum reverse leakage current per leg See fig. 2	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	20	mA
		$\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$		1200	
		$\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=12 \mathrm{~V}$	900	
		$\mathrm{T}_{\mathrm{J}}=100^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$	540	
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$ (test signal range 100 kHz to 1 MHz), $25^{\circ} \mathrm{C}$		5500	pF
Typical series inductance per leg	$\mathrm{L}_{\text {s }}$	Measured lead to lead 5 mm from package body		5.5	nH
Maximum voltage rate of change	dV/dt	Rated $\mathrm{V}_{\text {R }}$		10000	V/ $/$ s

Note
(1) Pulse width $<300 \mu$ s, duty cycle $<2 \%$

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction temperature range	T_{J}		-55 to +125	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		-55 to +150	
Maximum thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	DC operation See fig. 4	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum thermal resistance, junction to case per package		DC operation	0.25	
Typical thermal resistance, case to heatsink (D-61-8 only)	$\mathrm{R}_{\text {thCs }}$	Mounting surface, smooth and greased Device flatness <5 mils	0.30	
Approximate weight			7.8	g
			0.28	oz.
Mounting torque (D-61-8 only) minimum maximum			40 (35)	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf • in)
			58 (50)	
		Case style D-61-8	115CNQ015A	
Marking device		Case style D-61-8-SM	115CNQ015ASM	
		Case style D-61-8-SL	115CNQ015ASL	

Vishay Semiconductors

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

Fig. 4 - Maximum Thermal Impedance $Z_{\text {thJc }}$ Characteristics (Per Leg)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

Fig. 6 - Forward Power Loss Characteristics (Per Leg)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ Forward power loss $=I_{F(A V)} \times V_{F M}$ at $\left(I_{F(A V)} / D\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=5 \mathrm{~V}$

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Current rating (110 A)
3 - Circuit configuration:
C = common cathode
4 - Package:

$$
\mathrm{N}=\mathrm{D}-61
$$

5 - Schottky "Q" series
6 - Voltage rating ($015=15 \mathrm{~V}$)
7 - Package style:

- $A=D-61-8$
- $A S M=D-61-8-S M$
- ASL = D-61-8-SL

8
-
-
Standard pack quantity: $\mathrm{A}=10$ pieces; ASM/ASL $=20$ pieces

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95354
Part marking information	www.vishay.com/doc?95356

D-61-8, D-61-8-SM, D-61-8-SL

DIMENSIONS - D-61-8 in millimeters (inches)

DIMENSIONS - D-61-8-SM in millimeters (inches)

DIMENSIONS - D-61-8-SL in millimeters (inches)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Schottky Diodes \& Rectifiers category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10130A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081

