Vishay Semiconductors

High Performance Schottky Rectifier, 1.5 A

www.vishay.com

DO-214AC (SMA)

PRODUCT SUMMARY					
Package	DO-214AC (SMA)				
I _{F(AV)}	1.5 A				
V _R	40 V				
V _F at I _F	0.34 V				
I _{RM}	20 mA at 125 °C				
T _J max.	150 °C				
Diode variation	Single die				
E _{AS}	6.0 mJ				

FEATURES

- Low forward voltage drop
- Guard ring for enhanced ruggedness and long term reliability
- Small footprint, surface mountable
- High frequency operation
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- Meets JESD 201 class 2 whisker test
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

- Switching power supplies
- Meter protection
- · Reverse protection for power input to PC board circuits
- · Battery isolation and charging
- Low threshold voltage diode
- Freewheeling or by-pass diode
- Low voltage clamp

DESCRIPTION

The VS-15MQ040HM3 Schottky rectifier is designed to be used for low power applications where a reverse voltage of 40 V is encountered and surface mountable is required.

MAJOR RATINGS AND CHARACTERISTICS							
SYMBOL	CHARACTERISTICS	VALUES	UNITS				
I _{F(AV)}	Rectangular waveform	1.5	А				
V _{RRM}		40	V				
I _{FSM}	t _p = 5 μs sine	330	А				
V _F	2 A _{pk} , T _J = 125 °C	0.43	V				
TJ	Range	-40 to +150	°C				

VOLTAGE RATINGS			
PARAMETER	SYMBOL	VS-15MQ040HM3	UNITS
Maximum DC reverse voltage	V _R	40	V
Maximum working peak reverse voltage	V _{RWM}	40	V

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average forward current		50 % duty cycle at T_L = 105 °C, r On PC board 9 mm ² island (0.013 mm thick copper pad area	2.1	A		
See fig. 4		50 % duty cycle at T_L = 113 °C, rectangular waveform On PC board 9 mm ² island (0.013 mm thick copper pad area)		1.5	A	
Maximum peak one cycle		5 µs sine or 3 µs rect. pulse	Following any rated	330		
non-repetitive surge current See fig. 6	I _{FSM}	10 ms sine or 6 ms rect. pulse	load condition and with rated V _{RRM} applied	140	A	
Non-repetitive avalanche energy	E _{AS}	T _J = 25 °C, I _{AS} = 1 A, L = 12 mH		6.0	mJ	
Repetitive avalanche current	I _{AR}	Current decaying linearly to zero in 1 μ s Frequency limited by T _J maximum V _A = 1.5 x V _R typical 1.0		А		

Revision: 02-Apr-15

Document Number: 94837

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

COMPLIANT

HALOGEN

FREE

Г

www.vishay.com

Vishay Semiconductors

ELECTRICAL SPECIFICATIO	IS

PARAMETER	SYMBOL	TES	VALUES	UNITS	
		1.5 A	T ₁ = 25 °C	0.43	
Maximum forward voltage drop	V _{FM} ⁽¹⁾	2 A	1j = 25°C	0.49	V
See fig. 1	VFM (')	1.5 A	T ₁ = 125 °C	0.34	
		2 A	$I_{\rm J} = 125$ C	0.43	
Maximum reverse leakage current		T _J = 25 °C	V Deted V	0.5	mA
See fig. 2	I _{RM}	T _J = 125 °C	V _R = Rated V _R	20	
Threshold voltage	V _{F(TO)}			0.26	V
Forward slope resistance	r _t	$T_J = T_J maximum$	64.6	mΩ	
Typical junction capacitance	CT	V_R = 10 V_{DC} , T_J = 25 °C, test signal = 1 MHz		134	pF
Typical series inductance	L _S	Measured lead to lead 5 mm from package body		2.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R	10 000	V/µs	

Note

 $^{(1)}\,$ Pulse width = 300 $\mu s,$ duty cycle = 2 %

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	T_{J} ⁽¹⁾ , T_{Stg}		-40 to +150	°C	
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	80	°C/W	
Approvimete weight			0.07	g	
Approximate weight			0.002	oz.	
Marking device		Case style SMA (similar D-64)	Х	F	

Note

(1)

 $\frac{dP_{tot}}{dT_J} < \frac{1}{R_{thJA}}$ thermal runaway condition for a diode on its own heatsink

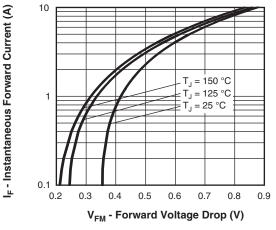
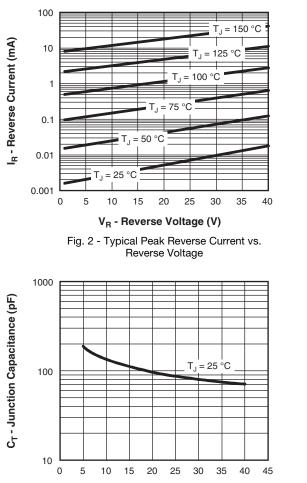
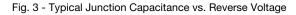
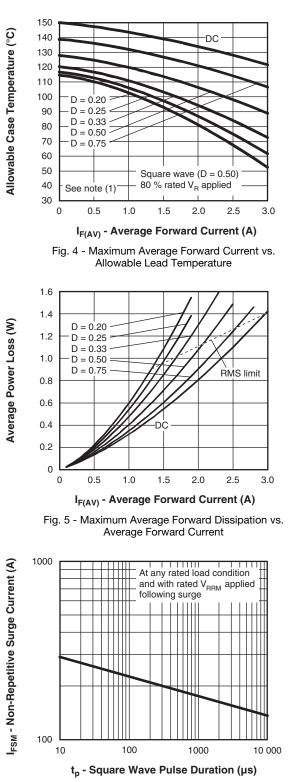
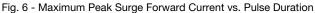




Fig. 1 - Maximum Forward Voltage Drop Characteristics




V_R - Reverse Voltage (V)

VS-15MQ040HM3

Vishay Semiconductors

Note

⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$;

Pd = Forward power loss = $I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6); Pd_{REV} = Inverse power loss = $V_{R1} \times I_R$ (1 - D); I_R at V_{R1} = 80 % rated V_R

Revision: 02-Apr-15

3

Document Number: 94837

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

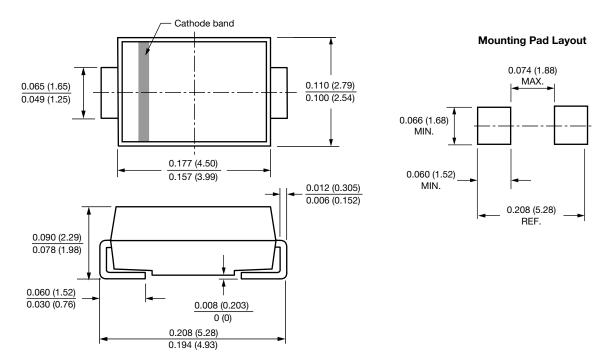
Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	VS-	15	м	Q	040	Н	М3
		2	3	4	5	6	7
	1	- Visl	hay Sen	niconduo	ctors pro	oduct	
	2	- Cur	rent rati	ng			
	3	- M =	SMA				
	4	- Q =	Schott	ky "Q" se	eries		
	5	- Vol	tage rati	ng (040	= 40 V))	
	6	- H=	AEC-Q	101 qua	lified		
	7	- Env	vironmer	ntal digit	:		
		M3	= Halog	en-free,	RoHS-	complia	nt and f

ORDERING INFORMATION (Example)					
PREFERRED P/N	PREFERRED PACKAGE CODE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-15MQ040HM3/5AT	5AT	7500	13" diameter plastic tape and reel		

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95400				
Part marking information	www.vishay.com/doc?95403				
Packaging information	www.vishay.com/doc?95404				


Outline Dimensions

Vishay Semiconductors

SMA

DIMENSIONS in inches (millimeters)

DO-214AC (SMA)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081