Vishay Semiconductors

Fast Recovery Diodes (Stud Version), 6 A, 12 A

PRODUCT SUMMARY	
I _{F(AV)}	6 A, 12 A
Package	DO-203AA (DO-4)
Circuit configuration	Single diode

FEATURES

- Short reverse recovery time
- · Low stored charge
- · Wide current range
- Excellent surge capabilities
- Standard JEDEC[®] types
- · Stud cathode and stud anode versions
- Fully characterized reverse recovery conditions
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- DC power supplies
- Inverters
- Converters
- Choppers
- Ultrasonic systems
- Freewheeling diodes

MAJOR RAT	MAJOR RATINGS AND CHARACTERISTICS				
SYMBOL	TEST CONDITIONS	1N3879(R) TO 1N3883(R)	1N3889(R) TO 1N3893(R)	UNITS	
1		6 ⁽¹⁾	12 ⁽¹⁾	Α	
I _{F(AV)}	T _C maximum	100	100	°C	
I _{F(RMS)}		9.5	19	Α	
1	50 Hz	72	145	А	
I _{FSM}	60 Hz	75 ⁽¹⁾	150 ⁽¹⁾	A	
l ² t	50 Hz	26	103	A ² s	
1-1	60 Hz	23	94	A-5	
I ² √t		363	856	l²√s	
V _{RRM}	Range	50 to 400 ⁽¹⁾	50 to 400 ⁽¹⁾	V	
t _{rr}		See Recovery Characteristics table	See Recovery Characteristics table	ns	
TJ	Range	-65 to +150	-65 to +150	°C	

Note

(1) JEDEC® registered values

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAG	E RATING	S				
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 25 °C μA	I _{RRM} MAXIMUM AT T _J = 100 °C mA	I _{RRM} MAXIMUM AT T _J = 150 °C mA
1N3879(R)		50	75			
1N3880(R)		100	150			
1N3881(R)	-	200	250	15 ⁽¹⁾	1.0 ⁽¹⁾	3.0 (1)
1N3882(R)		300	350			
1N3883(R)		400	450			
1N3889(R)		50	75			
1N3890(R)		100	150			
1N3891(R)	-	200	250	25 ⁽¹⁾	3.0 (1)	5.0 ⁽¹⁾
1N3892(R)		300	350			
1N3893(R)		400	450			

Note

(1) JEDEC® registered values

FORWARD CONDUCTION	DUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS		1N3879(R) TO 1N3883(R)	1N3889(R) TO 1N3893(R)	UNITS	
Maximum average forward current		180° cond	uction, half sine	wave	6 ⁽¹⁾	12 ⁽¹⁾	Α
at case temperature	I _{F(AV)}	DC			100	100	°C
Maximum RMS current	I _{F(RMS)}				9.5	19	
		t = 10 ms	No voltage		85	170	
Maximum peak, one-cycle		t = 8.3 ms	t = 8.3 ms reapplied		90	180	Α
non-repetitive forward current	I _{FSM}	t = 10 ms	t = 10 ms 100 % V _{RRM}		72	145	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	75 ⁽¹⁾	150 ⁽¹⁾	
		t = 10 ms	No voltage	initial T _J = 150 °C	36	145	
Maying up 12t far fuging	l ² t	t = 8.3 ms		1J = 150 C	33	130	A ² s
Maximum I ² t for fusing	1-1	t = 10 ms			26	103	A-S
		t = 8.3 ms	reapplied		23	94	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms	t = 0.1 ms to 10 ms, no voltage reapplied		363	1452	A²√s
Marian and formal voltage due	V	T _J = 25 °C	; I _F = Rated I _{F(A'}	_{V)} (DC)	1.4 (1)	1.4 (1)	.,
Maximum forward voltage drop	V_{FM}	T _C = 100 °	C; $I_{FM} = \pi \times rate$	ed I _{F(AV)}	1.5 (1)	1.5 ⁽¹⁾	V

Note

(1) JEDEC® registered values

Vishay Semiconductors

RECOVERY CH	ARACTE	RISTICS				
PARAMETER	SYMBOL	TEST CONDITIONS	1N3879(R) TO 1N3883(R)	1N3889(R) TO 1N3893(R)	UNITS	
Maximum reverse	+	$T_J = 25 ^{\circ}\text{C}$, $I_F = 1 \text{A to V}_R = 30 \text{V}$, $dI_F/dt = 100 \text{A/}\mu\text{s}$	150	150	ne	
recovery time	t _{rr}	$T_J = 25$ °C, $dI_F/dt = 25$ A/ μ s, $I_{FM} = \pi$ x rated $I_{F(AV)}$	300 ⁽¹⁾	300 ⁽¹⁾	ns	· •
Maximum peak recovery current	I _{RM(REC)}	$I_{FM} = \pi x \text{ rated } I_{F(AV)}$	4 (1)	5 (1)	-	I _{FM}
		T_J = 25 °C, I_F = 1 A to V_R = 30 V, dI_F/dt = 100 A/ μ s	400	350		dir/dt Q _{rr}
Maximum reverse recovery charge	Q _{rr}	T_J = 25 °C, dI_F/dt = 25 A/ μ s, I_{FM} = π x rated $I_{F(AV)}$	400	400	nC	I _{RM(REC)}

Note

(1) JEDEC® registered values

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	1N3879(R) TO 1N3883(R)	1N3889(R) TO 1N3893(R)	UNITS	
Maximum junction operating temperature range	TJ		-65 to	+150	°C	
Maximum storage temperature range	T _{Stg}		-65 to	+175		
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	2.5	2.0	9000	
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.5		- °C/W	
Allowable mounting torque		Not lubricated threads) - 10 % 3)	N·m	
Allowable mounting torque		Lubricated threads	1.2 + 0 - 10 % (10)		(lbf · in)	
Approximate weight				7	g	
Approximate weight			0.	25	oz.	
Case style		JEDEC®	DC)-203AA (DO-4)		

∆R _{thJC} CONDUCTI	ON					
CONDUCTION ANGLE	1N3879(R) TO 1N3883(R)	1N3889(R) TO 1N3893(R)	1N3879(R) TO 1N3883(R)	1N3889(R) TO 1N3893(R)	TEST CONDITIONS	UNITS
	SINUSOIDAL	CONDUCTION	RECTANGULAR	CONDUCTION		
180°	0.58	0.46	0.33	0.26	T _{.1} = 150 °C	
120°	0.60	0.48	0.58	0.46		K/W
60°	1.28	1.02	1.28	1.02	1) = 150 C	rv vv
30°	2.20	1.76	2.20	1.76		

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

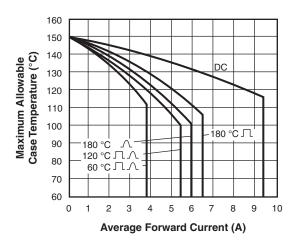


Fig. 1 - Average Forward Current vs. Maximum Allowable Case Temperature, 1N3879 Series

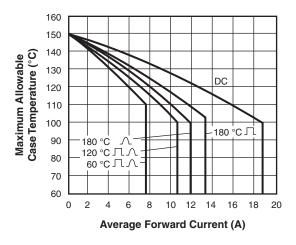
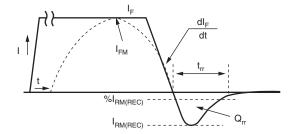
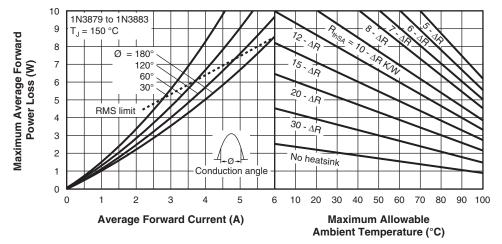



Fig. 2 - Average Forward Current vs. Maximum Allowable Case Temperature, 1N3889 Series


 $\mathbf{I}_{\mathrm{F}},\,\mathbf{I}_{\mathrm{FM}}$ - Peak forward current prior to commutation

-dl_F/dt - Rate of fall of forward current

 $I_{RM(REC)}$ - Peak reverse recovery current t_{rr} - Reverse recovery time

Q_{rr} - Reverse recovered charge

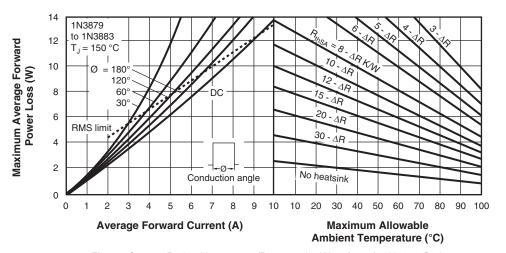
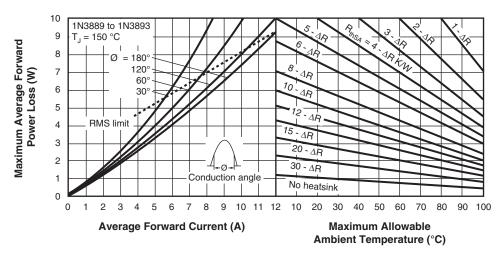

Fig. 3 - Reverse Recovery Time Test Waveform

Fig. 4 - Current Rating Nomogram (Sinusoidal Waveforms), 1N3879 Series	Fig. 4 - Current Rating	Nomogram	(Sinusoidal	Waveforms).	1N3879 Series
--	-------------------------	----------	-------------	-------------	---------------


Conduction angle - Ø	∆R - K/W
180°	0.58
120°	0.60
60°	1.28
30°	2.20

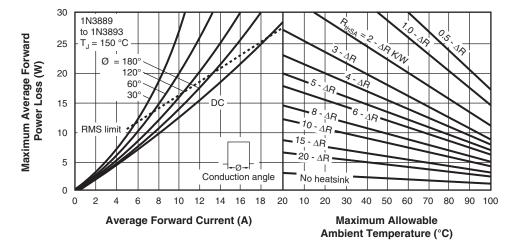

Conduction angle - Ø	∆R - K/W
DC	0
180°	0.33
120°	0.58
60°	1.28
30°	2.20

Fig. 5 - Current Rating Nomogram (Rectangular Waveforms), 1N3879 Series

Conduction angle - Ø	ΔR - KW
180°	0.46
120°	0.48
60°	1.02
30°	1.76

Fig. 6 - Current Rating Nomogram (Sinusoidal Waveforms), 1N3889 Series

Conduction angle - Ø	∆R - K/W
DC	0
180°	0.26
120°	0.46
60°	1.02
30°	1.76

Fig. 7 - Current Rating Nomogram (Rectangular Waveforms), 1N3889 Series

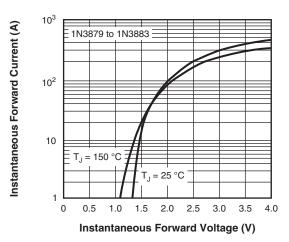


Fig. 8 - Maximum Forward Voltage vs. Forward Current, 1N3879 Series

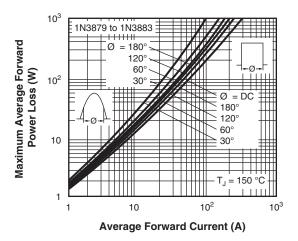


Fig. 9 - Maximum High Level Forward Power Loss vs. Average Forward Current, 1N3879 Series

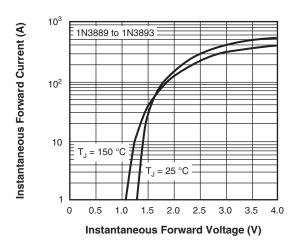


Fig. 10 - Maximum Forward Voltage vs. Forward Current, 1N3889 Series

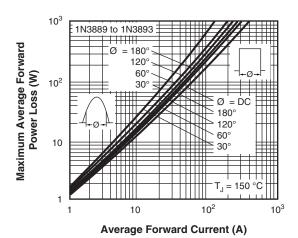


Fig. 11 - Maximum High Level Forward Power Loss vs. Average Forward Current, 1N3889 Series

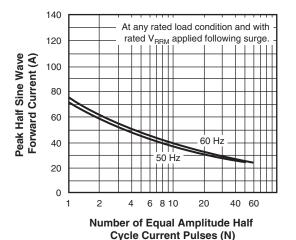
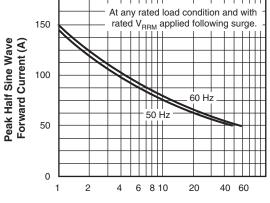
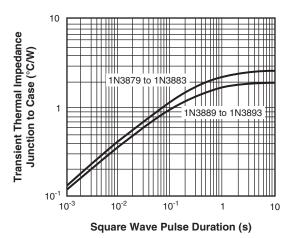



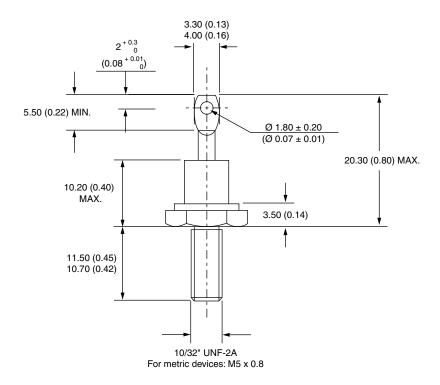
Fig. 12 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses, 1N3879 Series

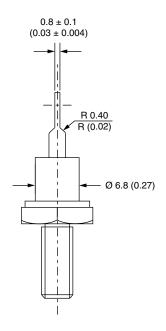
Number of Equal Amplitude Half Cycle Current Pulses (N)

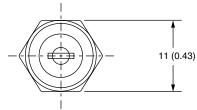
Fig. 13 - Maximum Non-Repetitive Surge Current vs. Number of Current Pulses, 1N3889 Series

Vishay Semiconductors




Fig. 14 - Maximum Transient Thermal Impedance, Junction to Case vs. Pulse Duration, All Series


LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95311



DO-203AA (DO-4)

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F
RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF
ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077
85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K
VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162