High Performance Schottky Rectifier, 2×15 A

D²PAK (TO-263AB)

vS-30CTQ...S-M3

Base common cathode

VS-30CTQ...-1-M3

PRIMARY CHARACTERISTICS

$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 15 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{R}}$	$80 \mathrm{~V}, 100 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{F}}$ at I_{F}	0.67 V
I_{RM}	7.0 mA at $125^{\circ} \mathrm{C}$
T_{J} max.	$175^{\circ} \mathrm{C}$
E_{AS}	7.5 mJ
Package	$\mathrm{D}^{2} \mathrm{PAK}(\mathrm{TO}-263 \mathrm{AB}), \mathrm{TO}-262 \mathrm{AA}$
Circuit configuration	Common cathode

FEATURES

- $175{ }^{\circ} \mathrm{C}$ TJ operation
- Center tap configuration

RoHS

- Low forward voltage drop
- High frequency operation
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
- Guard ring for enhanced ruggedness and long term reliability
- Meets MSL level 1, per J-STD-020, LF maximum peak of $245^{\circ} \mathrm{C}$
- Designed and qualified according to JEDEC ${ }^{\circledR}$-JESD 47
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

This center tap Schottky rectifier series has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to $175^{\circ} \mathrm{C}$ junction temperature. Typical applications are in switching power supplies, converters, freewheeling diodes, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS

SYMBOL	CHARACTERISTICS	VALUES	UNITS
$\mathrm{I}_{\text {F(AV }}$	Rectangular waveform	30	A
$\mathrm{~V}_{\text {RRM }}$		$80 / 100$	V
$\mathrm{I}_{\text {FSM }}$	$\mathrm{t}_{\mathrm{p}}=5 \mu \mathrm{~s}$ sine	850	A
$\mathrm{~V}_{\mathrm{F}}$	$15 \mathrm{~A}_{\mathrm{pk}}, \mathrm{T}_{J}=125^{\circ} \mathrm{C}$ (per leg)	0.67	V
$\mathrm{~T}_{J}$	Range	-55 to +175	${ }^{\circ} \mathrm{C}$

VOLTAGE RATINGS

PARAMETER	SYMBOL	VS-30CTQ080S-M3 VS-30CTQ080-1-M3	VS-30CTQ100S-M3 VS-30CTQ100-1-M3	UNITS
Maximum DC reverse voltage	V_{R}	80	100	V
Maximum working peak reverse voltage	$\mathrm{V}_{\mathrm{RWM}}$			

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average per device		50% duty cycle at $\mathrm{T}_{\mathrm{C}}=129^{\circ} \mathrm{C}$, rectangular waveform		30	A
forward current See fig. 5 per leg				15	
Maximum peak one cycle non-repetitive surge current per leg See fig. 7	$\mathrm{I}_{\text {FSM }}$	$5 \mu \mathrm{~s}$ sine or $3 \mu \mathrm{~s}$ rect. pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied	850	
		10 ms sine or $6 \mathrm{~ms} \mathrm{rect}$.		275	
Non-repetitive avalanche energy per leg	$\mathrm{E}_{\text {AS }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {AS }}=0.50 \mathrm{~A}, \mathrm{~L}=60 \mathrm{mH}$		7.50	mJ
Repetitive avalanche current per leg	$\mathrm{I}_{\text {AR }}$	Current decaying linearly to zero in $1 \mu \mathrm{~s}$ Frequency limited by T_{J} maximum $V_{A}=1.5 \times V_{R}$ typical		0.50	A

ELECTRICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum forward voltage drop per leg See fig. 1	$\mathrm{V}_{\mathrm{FM}}{ }^{(1)}$	15 A	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	0.86	V
		30 A		1.05	
		15 A	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	0.67	
		30 A		0.82	
Maximum reverse leakage current per leg See fig. 2	$\mathrm{I}_{\mathrm{RM}}{ }^{(1)}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ Rated V_{R}	0.55	mA
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		7.0	
Maximum junction capacitance per leg	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$ (test signal range 100 kHz to 1 MHz), $25^{\circ} \mathrm{C}$		500	pF
Typical series inductance per leg	$\mathrm{L}_{\text {s }}$	Measured lead to lead 5 mm from package body		8.0	nH
Maximum voltage rate of change	dV/dt	Rated $\mathrm{V}_{\text {R }}$		10000	V/us

Note

(1) Pulse width $<300 \mu$ s, duty cycle $<2 \%$

THERMAL - MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-55 to 175	${ }^{\circ} \mathrm{C}$
Maximum thermal resistance, junction to case per leg	$\mathrm{R}_{\text {thJc }}$	DC operation	3.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum thermal resistance, junction to case per package			1.63	
Typical thermal resistance, case to heatsink	$\mathrm{R}_{\text {thCs }}$	Mounting surface, smooth and greased	0.50	
Approximate weight			2	g
			0.07	oz.
Mounting torque $\quad \frac{\text { minimum }}{\text { maximum }}$			6 (5)	kgf.cm (lbf • in)
			12 (10)	
Marking device		Case style D2PAK (TO-263AB)	30CTQ080S 30CTQ100S	
		Case style TO-262AA	$\begin{aligned} & \hline \text { 30CTQ080-1 } \\ & \text { 30CTQ100-1 } \end{aligned}$	

VS-30CTQ...S-M3, VS-30CTQ...-1-M3 Series

Fig. 1 - Maximum Forward Voltage Drop Characteristics (Per Leg)

Vishay Semiconductors

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage (Per Leg)

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage (Per Leg)

Fig. 4 - Maximum Thermal Impedance $\mathrm{Z}_{\text {thJC }}$ Characteristics (Per Leg)

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current (Per Leg)

Fig. 6 - Forward Power Loss Characteristics (Per Leg)

Fig. 7 - Maximum Non-Repetitive Surge Current (Per Leg)

Fig. 8 - Unclamped Inductive Test Circuit

Note

(1) Formula used: $T_{C}=T_{J}-\left(P d+P_{R E V}\right) \times R_{\text {thJC }}$;
$\mathrm{Pd}=$ forward power loss $=\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \times \mathrm{V}_{\mathrm{FM}}$ at $\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV}} / \mathrm{D}\right)$ (see fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ inverse power loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}}$ at $\mathrm{V}_{\mathrm{R} 1}=10 \mathrm{~V}$

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Current rating (30 A)
3 - Circuit configuration: C = common cathode
4 - $\quad \mathrm{T}=\mathrm{TO}-220$
5 - Schottky "Q" series
6 - Voltage ratings

$$
080=80 \mathrm{~V}
$$

$100=100 \mathrm{~V}$

- $\mathrm{S}=$ D 2 PAK (TO-263AB)
- -1 = TO-262AA

8 - $\mathrm{None}=$ tube

- TRL = tape and reel (left oriented - for D²PAK (TO-263AB) only)
- TRR = tape and reel (right oriented - for D²PAK (TO-263AB) only)
$9 \quad-\quad-\mathrm{M} 3=$ halogen-free, RoHS-compliant, and termination lead (Pb)-free

ORDERING INFORMATION			
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-30CTQ080S-M3	50	1000	Antistatic plastic tubes
VS-30CTQ080STRR-M3	800	800	$13^{\prime \prime}$ diameter reel
VS-30CTQ080STRL-M3	800	800	$13^{\prime \prime}$ diameter reel
VS-30CTQ080-1-M3	50	1000	Antistatic plastic tubes
VS-30CTQ100S-M3	50	1000	Antistatic plastic tubes
VS-30CTQ100STRR-M3	800	800	$13^{\prime \prime}$ diameter reel
VS-30CTQ100STRL-M3	800	800	13 diameter reel
VS-30CTQ100-1-M3	50	1000	Antistatic plastic tubes

LINKS TO RELATED DOCUMENTS		
Dimensions	D2 PAK (TO-263AB)	www.vishay.com/doc?96164
	TO-262AA	$\underline{\text { www.vishay.com/doc?96165 }}$
Part marking information	D2PAK (TO-263AB)	www.vishay.com/doc?95444
	TO-262AA	$\underline{\text { www.vishay.com/doc?95443 }}$
Packaging information		$\underline{w w . v i s h a y . c o m / d o c ? 96424 ~}$

D2PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.			MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190		D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010		E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039		E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4	e		BS	0.10	BSC	
b2	1.14	1.78	0.045	0.070		H	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4	L	1.78	2.79	0.070	0.110	
c	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4	L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065		L3	0.2	BC	0.01	BSC	
D	8.51	9.65	0.335	0.380	2	L4	4.78	5.28	0.188	0.208	

Notes

${ }^{(1)}$ Dimensioning and tolerancing per ASME Y14.5 M-1994
${ }^{(2)}$ Dimension D and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005{ }^{\prime \prime}\right)$ per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Datum A and B to be determined at datum plane H
(6) Controlling dimension: inch
${ }^{(7)}$ Outline conforms to JEDEC ${ }^{\circledR}$ outline TO-263AB

DIMENSIONS in millimeters and inches
Modified JEDEC outline TO-262

SYMBOL	MILLIMETERS		INCHES		
	MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	
c	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	
D	1.14	1.65	0.045	0.335	0.380
E	8.51	8.86	10.67	0.370	0.380

Notes

(1) Dimensioning and tolerancing as per ASME Y14.5M-1994
${ }^{(2)}$ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm ($0.005{ }^{\prime \prime}$) per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Controlling dimension: inches
(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

TO-262

Note
${ }^{(1)}$ If part number contain " H " as last digit, product is AEC-Q101 qualified

ENVIRONMENTAL NAMING CODE (Z)	PRODUCT DEFINITION
A	Termination lead (Pb)-free
B	Totally lead (Pb)-free
E	RoHS-compliant and termination lead (Pb)-free
F	RoHS-compliant and totally lead (Pb)-free
M	Halogen-free, RoHS-compliant and termination lead (Pb)-free
N	Halogen-free, RoHS-compliant and totally lead (Pb)-free
G	Green

D2PAK

Note
(1) If part number contain "H" as last digit, product is AEC-Q101 qualified

ENVIRONMENTAL NAMING CODE (Z)	PRODUCT DEFINITION
A	Termination lead (Pb)-free
B	Totally lead (Pb)-free
E	RoHS-compliant and termination lead (Pb)-free
F	RoHS-compliant and totally lead (Pb)-free
M	Halogen-free, RoHS-compliant, and termination lead (Pb)-free
N	Halogen-free, RoHS-compliant, and totally lead (Pb)-free
G	Green

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Schottky Diodes \& Rectifiers category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
CUS06(TE85L,Q,M) MA4E2039 D1FH3-5063 MBR0530L-TP MBR10100CT-BP MBR30H100MFST1G MMBD301M3T5G PMAD1103LF PMAD1108-LF RB160M-50TR RB520S-30 RB551V-30 DD350N18K DZ435N40K DZ600N16K BAS16E6433HTMA1 BAS 3010S02LRH E6327 BAT 54-02LRH E6327 IDL02G65C5XUMA1 NSR05F40QNXT5G NSVR05F40NXT5G JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SBAT54CWT1G SBM30-03-TR-E SBS818-TL-E SK32A-LTP SK33A-TP SK34A-TP SK34B-TP SMD1200PL-TP ACDBN160-HF SS3003CH-TL-E STPS30S45CW PDS3100Q-7 GA01SHT18 CRS10I30A(TE85L,QM MBR1240MFST1G MBRB30H30CT-1G BAS28E6433HTMA1 BAS 70-02L E6327 HSB123JTR-E JANTX1N5712-1 VS-STPS40L45CW-N3 DD350N12K $\underline{\text { SB007-03C-TB-E SB10015M-TL-E SB1003M3-TL-E SK110-LTP }}$

