
Thyristor High Voltage, Phase Control SCR, 40 A

PRIMARY CHARACTERISTICS						
I _{T(AV)} 35 A						
V _{DRM} /V _{RRM}	1200 V					
V_{TM}	1.45 V					
I _{GT}	150 mA					
TJ	-40 °C to +125 °C					
Package	TO-247AD 3L					
Circuit configuration	Single SCR					

FEATURES

Flexible solution for reliable AC power rectification

HALOGEN FREE

- Easy control peak current at charger power up to reduce passive / electromechanical components
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

APPLICATIONS

- · On-board and off-board EV / HEV battery chargers
- Renewable energy inverters

DESCRIPTION

The VS-40TPS12.. high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications.

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
I _{T(AV)}	Sinusoidal waveform	35	^			
I _{RMS}		55	A			
V _{RRM} /V _{DRM}		1200	V			
I _{TSM}		600	A			
V _T	40 A, T _J = 25 °C	1.45	V			
dv/dt		500	V/µs			
di/dt		100	A/µs			
T _J		- 40 to + 125	°C			

VOLTAGE RATINGS							
PART NUMBER	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA				
VS-40TPS12ALHM3	1200	1300	10				

ABSOLUTE MAXIMUM RATINGS							
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS		
Maximum average on-state current	I _{T(AV)}	T _C = 79 °C, 180° conduction half sine wave)	35			
Maximum continuous RMS on-state current as AC switch	I _{T(RMS)}			55	А		
Maximum peak, one-cycle	L	10 ms sine pulse, rated V _{RRM} applied		500			
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied		600			
Maximum I ² t for fusing	I ² t	10 ms sine pulse, rated V _{RRM} applied	Initial $T_J = T_J \text{ max.}$	1250	A ² s		
waxiinum i-t for fusing	1-1	10 ms sine pulse, no voltage reapplied		1760	ALS		
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied	17 600	A²√s			
Low level value of threshold voltage	V _{T(TO)1}			1.02	V		
High level value of threshold voltage	V _{T(TO)2}	T 405.00		1.23	ď		
Low level value of on-state slope resistance	r _{t1}	T _J = 125 °C		9.74	mΩ		
High level value of on-state slope resistance	r _{t2}			7.50	1115.2		
Maximum peak on-state voltage	V_{TM}	110 A, T _J = 25 °C		1.85	V		
Maximum rate of rise of turned-on current	di/dt	T _J = 25 °C		100	A/µs		
Maximum holding current	I _H	Anode supply = 6 V, resistive load, initial T _J	= 1 A, I _T = 25 °C	300			
Maximum latching current	ΙL	Anode supply = 6 V, resistive load, T _J = 25 °C		350	A		
Maximum rayaraa and direct lookess assurest		$T_J = 25 ^{\circ}\text{C}$		0.5	mA		
Maximum reverse and direct leakage current	I _{RRM/} I _{DRM}	$T_J = 125 ^{\circ}\text{C}$ $V_R = \text{rated } V_{RRM} / V_{DR}$	$V_R = \text{rated } V_{RRM} / V_{DRM}$		1		
Maximum rate of rise of off-state voltage	dv/dt	T _J = T _J maximum, linear to 80 % V _{DRM} , R _q -	500	V/µs			

TRIGGERING							
PARAMETER	SYMBOL	TEST CO	VALUES	UNITS			
Maximum peak gate power	P _{GM}			10	W		
Maximum average gate power	P _{G(AV)}			2.5	VV		
Maximum peak gate current	I _{GM}			2.5	Α		
Maximum peak negative gate voltage	-V _{GM}			10	V		
	V_{GT}	T _J = - 40 °C	Anode supply = 6 V resistive load	2.0	V		
Maximum required DC gate voltage to trigger		T _J = 25 °C		1.7			
		T _J = 125 °C		1.3			
		T _J = - 40 °C		150			
Maximum required DC gate current to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V	40	mA		
		T _J = 125 °C	resistive load	20			
Maximum DC gate voltage not to trigger	V_{GD}	T 105 °C V "-t	0.15	V			
Maximum DC gate current not to trigger	I_{GD}	T _J = 125 °C, V _{DRM} = rated value					

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum junction and storage temperature range	T _J , T _{Stg}		- 40 to + 125	°C			
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.6				
Maximum thermal resistance, junction to ambient	R _{thJA}	DC operation	40	°C/W			
Maximum thermal resistance, case to heat sink	R _{thCS}	Mounting surface, smooth and greased	0.20				
Approximate weight			6	g			
Approximate weight			0.21	OZ.			
Mounting torque minimum	1		6 (5)	kgf · cm			
maximum	i l		12 (10)	(lbf·in)			
Marking device		Case style TO-247AD 3L	40TPS12	2ALH			

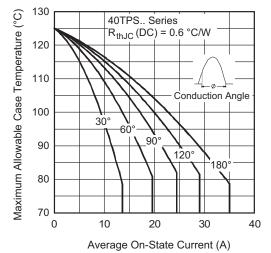


Fig. 1 - Current Rating Characteristics

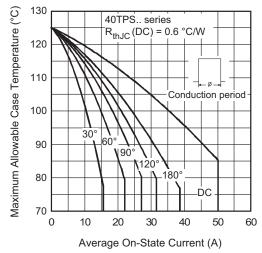


Fig. 2 - Current Rating Characteristics

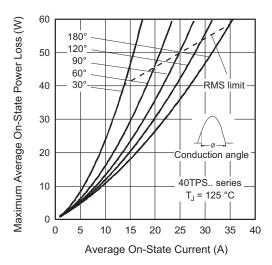


Fig. 3 - On-State Power Loss Characteristics

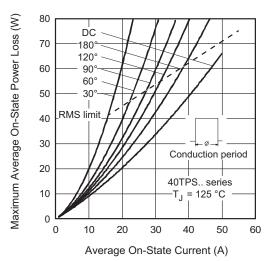


Fig. 4 - On-State Power Loss Characteristics

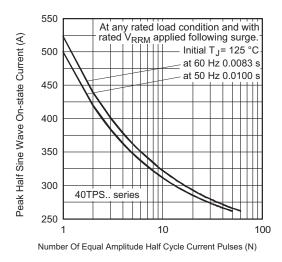


Fig. 5 - Maximum Non-Repetitive Surge Current

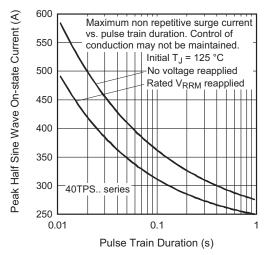


Fig. 6 - Maximum Non-Repetitive Surge Current

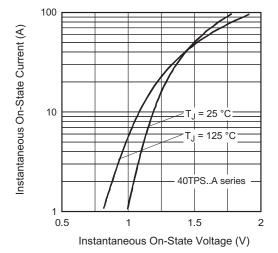


Fig. 7 - On-State Voltage Drop Characteristics

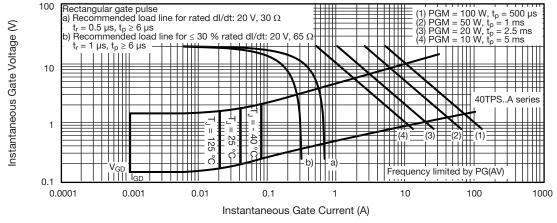


Fig. 8 - Gate Characteristics

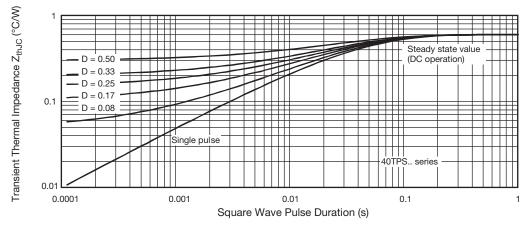
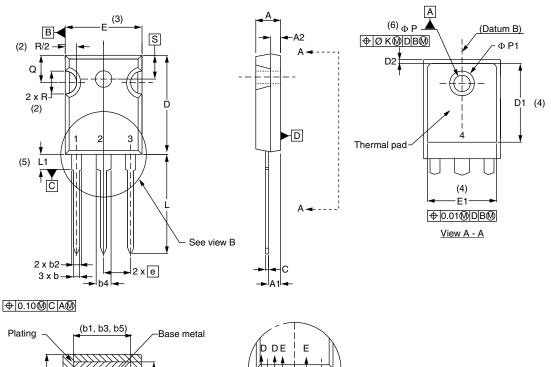
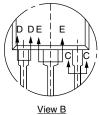


Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

ORDERING INFORMATION TABLE


Device code	VS-	40	Т	Р	s	12	Α	L	н	М3
	1	2	3	4	5	6	7	8	9	10
	1	- Vish	nay Sem	niconduc	tors pro	duct				
	2	- Cur	rent rati	ng (40 =	40 A)					
	3	- Circ	uit conf	iguratior	n:					
		T =	thyristo	r						
	4	- Pac	kage:							
	_		TO-247							
	5		e of silic			_				
					ery rectif	ier	Γ	40 40	200.14	
			age rati	_				12 = 12	200 V	
	7			-	tion 40 ı		imum			
	_	• N	one = s	tandard	lgt seled	ction				
	8	- L=	long lea	ids						
	9	- H=	AEC-Q	101 qua	lified					
	10	- Env	rironmer	ntal digit	:					
		МЗ	= halog	en-free,	RoHS-c	compliar	nt, and t	erminat	ions lea	d (Pb)-fi

ORDERING INFORMATION (Example)						
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION			
VS-40TPS12ALHM3	25	500	Antistatic plastic tubes			


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95626			
Part marking information	www.vishay.com/doc?95007			

TO-247AD 3L

DIMENSIONS in millimeters and inches

Plating _	(b1, b3, b5)	-Base meta
(c)		c1
	(b, b2, b4) — (4)	
9	Section C - C, D - D	<u>, E - E</u>

SYMBOL	MILLIN	IETERS	INCHES		NOTES
STMBUL	MIN.	MAX.	MIN.	MAX.	NOTES
Α	4.65	5.31	0.183	0.209	
A1	2.21	2.59	0.087	0.102	
A2	1.50	2.49	0.059	0.098	
b	0.99	1.40	0.039	0.055	
b1	0.99	1.35	0.039	0.053	
b2	1.65	2.39	0.065	0.094	
b3	1.65	2.34	0.065	0.092	
b4	2.59	3.43	0.102	0.135	
b5	2.59	3.38	0.102	0.133	
С	0.38	0.89	0.015	0.035	
c1	0.38	0.84	0.015	0.033	
D	19.71	20.70	0.776	0.815	3
D1	13.08	-	0.515	-	4

SYMBOL	IVIILLIIV	IEIENO	INCHES		NOTES
STIVIDUL	MIN.	MAX.	MIN.	MAX.	NOTES
D2	0.51	1.30	0.020	0.051	
E	15.29	15.87	0.602	0.625	3
E1	13.46	-	0.53	-	
е	5.46	BSC	0.215	BSC	
ØK	2.	2.54)10	
L	19.81	20.32	0.780	0.800	
L1	3.71	4.29	0.146	0.169	
ØР	3.56	3.66	0.14	0.144	
Ø P1	-	6.98	-	0.275	
Q	5.31	5.69	0.209	0.224	
R	4.52	5.49	0.178	0.216	
S	5.51 BSC		0.217	BSC	

INCHES

MILLIMETERS

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5M-1994
- (2) Contour of slot optional
- (3) Dimension D and E do not include mold flash. These dimensions are measured at the outermost extremes of the plastic body
- (4) Thermal pad contour optional with dimensions D1 and E1
- (5) Lead finish uncontrolled in L1
- (6) Ø P to have a maximum draft angle of 1.5 to the top of the part with a maximum hole diameter of 3.91 mm (0.154")
- (7) Outline conforms to JEDEC® outline TO-247 with exception of dimension A min., D, E min., Q min., S, and note 4

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

NTE5428 T1500N16TOF VT T880N16TOF TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R

T1190N16TOF VT T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-110RKI40 NTE5427 NTE5442

T2160N28TOF VT TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF

VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518

NTE5519 NTE5529 NTE5553 NTE5555 NTE5557 NTE5567 NTE5570 NTE5570 NTE5574 NTE5576 NTE5579 NTE5589 NTE5592

NTE5598