Vishay Semiconductors

"Half Bridge" IGBT MTP (Warp Speed IGBT), 114 A

www.vishay.com

PRIMARY CHARACTERISTICS						
V _{CES} 600 V						
$V_{CE(on)}$ typical at $V_{GE} = 15 \text{ V}$	2.3 V					
I _C at T _C = 25 °C	114 A					
Speed	30 kHz to 100 kHz					
Package	MTP					
Circuit configuration	Half bridge					

FEATURES

- Gen 4 warp speed IGBT technology
- HEXFRED[®] antiparallel diodes with ultrasoft reverse recovery
- Very low conduction and switching losses
- Optional SMD thermistor (NTC)
- Very low junction to case thermal resistance
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Optimized for welding, UPS and SMPS applications
- Low EMI, requires less snubbing
- Direct mounting to heatsink
- PCB solderable terminals
- Very low stray inductance design for high speed operation

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
		T _C = 25 °C	114		
Continuous collector current	IC	T _C = 109 °C	50]	
Pulsed collector current	I _{CM}		350	A	
Peak switching current	I _{LM}		350	A	
Diode continuous forward current	I _F	T _C = 109 °C	34]	
Peak diode forward current	I _{FM}		200]	
Gate to emitter voltage	V _{GE}		± 20	- V	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500		
.	D	T _C = 25 °C	658	w	
Maximum power dissipation	P _D	T _C = 100 °C	263		

ELECTRICAL SPECIFICATIONS ($T_J = 25 \text{ °C}$ unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES}	$V_{GE} = 0 V, I_{C} = 500 \ \mu A$	600	-	-	V
		V _{GE} = 15 V, I _C = 50 A	-	2.3	3.15	
Collector to emitter voltage	V _{CE(on)}	V _{GE} = 15 V, I _C = 100 A	-	2.5	3.2	v
		V _{GE} = 15 V, I _C = 50 A, T _J = 150 °C	-	1.72	2.17	v
Gate threshold voltage	V _{GE(th)}	I _C = 0.5 mA	3	-	6	
Collector to emitter leaking current	1	$V_{GE} = 0 \text{ V}, \text{ I}_{C} = 600 \text{ A}$	-	-	0.4	mA
Collector to emitter leaking current I _{CES}		V_{GE} = 0 V, I _C = 600 A, T _J = 150 °C	-	-	10	ШA
Diode forward voltage drop	V _{FM}	$I_F = 50 \text{ A}, V_{GE} = 0 \text{ V}$	-	1.58	1.80	
		$I_F = 50 \text{ A}, V_{GE} = 0 \text{ V}, T_J = 150 ^\circ\text{C}$	-	1.49	1.68	V
		I_F = 100 A, V_{GE} = 0 V, T_J = 25 °C	-	1.9	2.17	
Gate to emitter leakage current	I _{GES}	$V_{GE} = \pm 20 \text{ V}$	-	-	± 250	nA

ROHS COMPLIANT

Revision: 09-Oct-17 1 Document Number: 94468 For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-50MT060WHTAPbF

www.vishay.com

Vishay Semiconductors

SWITCHING CHARACTERISTICS ($T_J = 25 \text{ °C}$ unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg	I _C = 52 A	-	331	385	
Gate to emitter charge (turn-on)	Q _{ge}	$V_{CC} = 400 \text{ V}$	-	44	52	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V	-	133	176	
Turn-on switching loss	Eon	Internal gate resistors (see electrical diagram)	-	0.26	-	
Turn-off switching loss	E _{off}	$I_{C} = 50 \text{ A}$, $V_{CC} = 480 \text{ V}$, $V_{GE} = 15 \text{ V}$, $L = 200 \mu\text{H}$ energy losses include tail and diode reverse	-	1.2	-	mJ
Total switching loss	E _{ts}	recovery, $T_J = 25 \text{ °C}$	-	1.46	-	
Turn-on switching loss	E _{on}	Internal gate resistors (see electrical diagram)	-	0.73	-	
Turn-off switching loss	E _{off}	$I_{C} = 50 \text{ A}, V_{CC} = 480 \text{ V}, V_{GE} = 15 \text{ V}, L = 200 \mu\text{H}$ energy losses include tail and diode reverse	-	1.66	-	mJ
Total switching loss	E _{ts}	recovery, $T_J = 150 \text{ °C}$	-	2.39	-	
Input capacitance	Cies	V _{GE} = 0 V	-	7100	-	
Output capacitance	Coes	$V_{CC} = 30 V$	-	510	-	pF
Reverse transfer capacitance	C _{res}	f = 1.0 MHz	-	140	-	
Diode reverse recovery time	t _{rr}	V _{CC} = 200 V, I _C = 50 A dl/dt = 200 A/µs	-	82	97	ns
Diode peak reverse current	Irr		-	8.3	10.6	А
Diode recovery charge	Q _{rr}	avat – 2007 vµ3	-	340	514	nC
Diode reverse recovery time	t _{rr}	$V_{CC} = 200 \text{ V}, I_{C} = 50 \text{ A}$	-	137	153	ns
Diode peak reverse current	Irr	dl/dt = 200 A/µs	-	12.7	14.8	А
Diode recovery charge	Q _{rr}	T _J = 125 °C	-	870	1132	nC

THERMISTOR SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Resistance	R ₀ ⁽¹⁾	T ₀ = 25 °C	-	30	-	kΩ
Sensitivity index of the thermistor material	β (1)(2)	T ₀ = 25 °C T ₁ = 85 °C	-	4000	-	к

Notes

⁽¹⁾ T_0 , T_1 are thermistor's temperatures

⁽²⁾
$$\frac{R_0}{R_1} = \exp\left[\beta\left(\frac{1}{T_0} - \frac{1}{T_1}\right)\right]$$
, temperature in Kelvin

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating junction IGB	BT, diode	TJ		-40	-	150	
temperature range Th	nermistor	IJ		-40	-	125	°C
Storage temperature range		T _{Stg}		-40	-	125	
Junction to case	IGBT	Р		-	-	0.38	
Junction to case	Diode	R _{thJC}		-	-	0.8	°C/W
Case to sink per module		R _{thCS}	Heatsink compound thermal conductivity = 1 W/mK	-	0.06	-	
Clearance ⁽¹⁾			External shortest distance in air between 2 terminals	5.5	-	-	
Creepage ⁽¹⁾			Shortest distance along the external surface of the	8 -	_	_	mm
			insulating material between 2 terminals	0			
			A mounting compound is recommended and the				
Mounting torque to heatsink			torque should be checked after 3 hours to allow for	3 ± 10 %		Nm	
			the spread of the compound. Lubricated threads.				
Weight					66		g

Note

⁽¹⁾ Standard version only i.e. without optional thermistor

Revision: 09-Oct-17

2

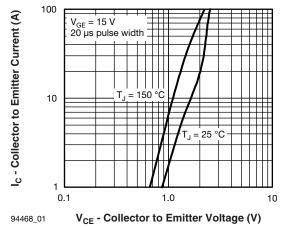


Fig. 1 - Typical Output Characteristics

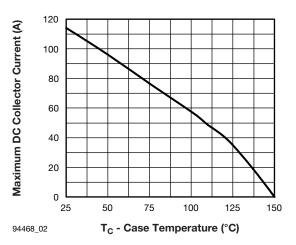


Fig. 2 - Maximum Collector Current vs. Case Temperature

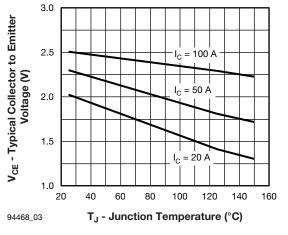


Fig. 3 - Typical Collector to Emitter Voltage vs. Junction Temperature

20 $V_{\rm CC} = 400$ V V_{GE} - Gate to Emitter Voltage (V) $I_{\rm C} = 52 \, {\rm A}$ 16 12 8 4 0 100 200 300 0 400 94468 04 O_G - Typical Gate Charge (nC) Fig. 4 - Typical Gate Charge vs. Gate to Emitter Votlage 100 I_F - Instantaneous Forward Current (A) 10 T_J = 150 °C T₁ = 125 °C T₁ = 25 °C 0.4 2.4 0.8 1.2 1.6 2.0 V_{FM} - Forward Voltage Drop (V) 94468_05 Fig. 5 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current 160 $V_{R} = 200 V$

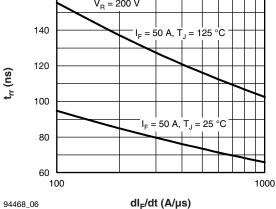
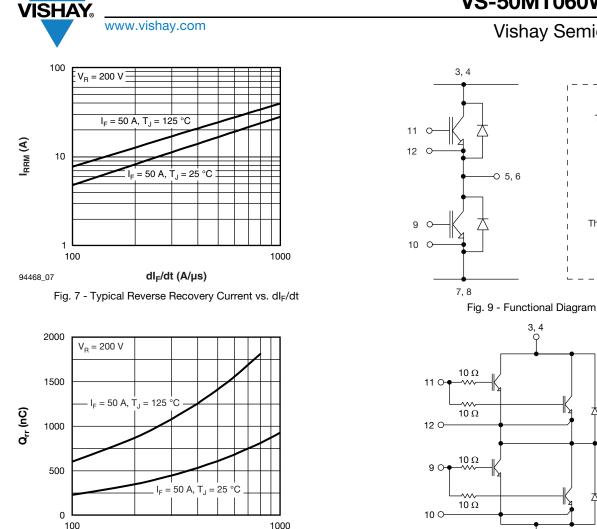


Fig. 6 - Typical Reverse Recovery Time vs. dl_F/dt

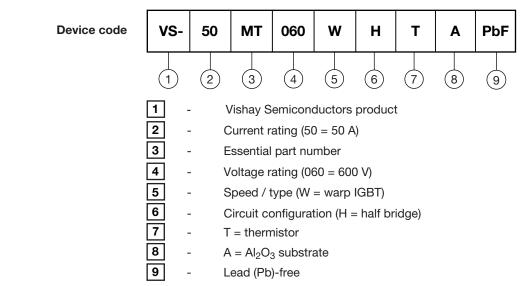
VS-50MT060WHTAPbF


Vishay Semiconductors

Revision: 09-Oct-17

3

Document Number: 94468


For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

94468 08

dl_r/dt (A/µs) Fig. 8 - Typical Stored Charge vs. dl_F/dt

ORDERING INFORMATION TABLE

Revision: 09-Oct-17 Document Number: 94468 4 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

VS-50MT060WHTAPbF

Vishay Semiconductors

2

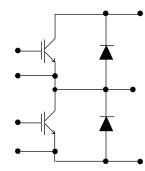
Thermistor

option

-O 5, 6

木

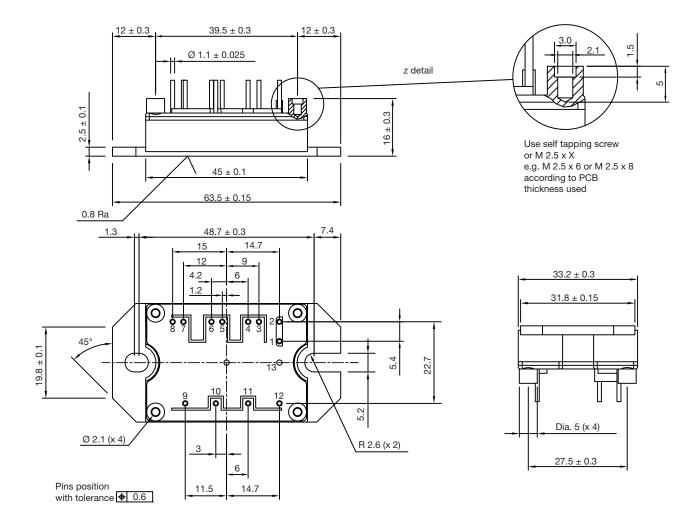
0 7, 8


Fig. 10 - Electrical Diagram

VS-50MT060WHTAPbF

Vishay Semiconductors

CIRCUIT CONFIGURATION


Dimensions www.vishay.com/doc?95175	LINKS TO RELATED DOCUMENTS					
	Dimensions	www.vishay.com/doc?95175				

Vishay Semiconductors

MTP

DIMENSIONS in millimeters

Note

· Unused terminals are not assembled in the package

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Modules category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 F3L400R07ME4_B22
 F4-50R07W2H3_B51
 FB15R06W1E3
 FB20R06W1E3_B11
 FD1000R33HE3-K
 FD400R12KE3
 FD400R33KF2C-K

 FD401R17KF6C_B2
 FD-DF80R12W1H3_B52
 FF200R06YE3
 FF300R12KE4_E
 FF450R12ME4P
 FF600R12IP4V
 FP15R12W2T4

 FP20R06W1E3
 FP50R12KT3
 FP75R07N2E4_B11
 FS10R12YE3
 FS150R07PE4
 FS150R12PT4
 FS200R06W1E3_B11

 FS50R07N2E4_B11
 FZ1000R33HE3
 FZ1800R17KF4
 DD250S65K3
 DF1000R17IE4
 DP1000R17IE4D_B2
 DF1400R12IP4D

 DF200R12PT4_B6
 DF400R07PE4R_B6
 BSM75GB120DN2_E3223c-Se
 F3L300R12ME4_B22
 F3L75R07W2E3_B11
 F4-50R12K54_B11

 FD1400R12IP4D
 FD200R12PT4_B6
 FD800R33KF2C-K
 FF150R12ME3G
 FF300R17KE3_S4
 FF300R17ME4_B11
 FF401R17KF6C_B2

 FF650R17IE4D_B2
 FF900R12IP4D
 FP50R07N2E4_B11
 FS100R07PE4
 FS150R07N3E4_B11
 FS150R17N3E4

 FS150R17PE4
 F
 FS150R12PE4
 FS150R17N3E4_B11
 FS150R17N3E4