VS-50PF(R)...(W) High Voltage Series

Vishay Semiconductors

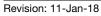
Standard Recovery Diodes, Generation 2 DO-5 (Stud Version), 50 A

www.vishay.com

PRIMARY CHARACTERISTICS					
I _{F(AV)} 50 A					
Package	DO-5 (DO-203AB)				
Circuit configuration	Single				

FEATURES

- High surge current capability
- · Designed for a wide range of applications
- Stud cathode and stud anode version
- Wire version available
- Low thermal resistance
- Designed and qualified for multiple level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


TYPICAL APPLICATIONS

- Converters
- Power supplies
- Machine tool controls
- Welding
- Any high voltage input rectification bridge

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
		50	А		
I _{F(AV)}	T _C	128	°C		
I _{F(RMS)}		78	А		
I _{FSM}	50 Hz	570			
	60 Hz	595	A		
l ² t	50 Hz	1600	A ² s		
1-1	60 Hz	1450	A-5		
V _{RRM}	Range	1400 to 1600	V		
TJ		-55 to +160	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 150 °C mA		
VS-50PF(R)(W) 140		1400	1650	4.5		
V3-50FF(N)(VV)	160	1600	1900	4.5		

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

Vishay Semiconductors

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	I =	180° conduc	tion, half sine wave		50	А
at case temperature	I _{F(AV)}		tion, nan sine wave		128	°C
Maximum RMS forward current	I _{F(RMS)}				78	А
		t = 10 ms	No voltage		570	A
Maximum peak, one cycle forward,	I	t = 8.3 ms	reapplied	Sinusoidal half wave, initial T _J = 150 °C	595	
non-repetitive surge current	IFSM	t = 10 ms	100 % V _{RRM} reapplied		480	
		t = 8.3 ms			500	
		t = 10 ms	No voltage		1600	A ² s
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		1450	
Maximum int for fusing		t = 10 ms	100 % V _{RRM} reapplied		1150	
		t = 8.3 ms			1050	
Maximum I ² \sqrt{t} for fusing	l²√t	t = 0.1 ms to 10 ms, no voltage reapplied			16 000	A²√s
Low level value of threshold voltage	V _{F(TO)}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum 0.77			V	
Low level value of forward slope resistance	r _f	$(16.7 \% \text{ x } \pi \text{ x } _{F(AV)} < I < \pi \text{ x } _{F(AV)}), T_J = T_J \text{ maximum}$ 4.30 m Ω			mΩ	
Maximum forward voltage drop	V _{FM}	$I_{pk} = 125 \text{ A}, T_J = 25 \text{ °C}, t_p = 400 \ \mu \text{s}$ rectangular wave 1.50 V			V	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction and storage temperature range	T _J , T _{Stg}		-55 to 160	°C	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.51		
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased 0.25		K/W	
Maximum allowable mounting torque (+0 %, -10 %)		Not lubricated thread, tighting on nut ⁽¹⁾	3.4 (30)	N ⋅ m (lbf ⋅ in)	
		Lubricated thread, tighting on nut ⁽¹⁾	2.3 (20)		
		Not lubricated thread, tighting on hexagon ⁽²⁾	4.2 (37)		
		Lubricated thread, tighting on hexagon ⁽²⁾	3.2 (28)		
Approximate weight			15.8	g	
Approximate weight			0.56	oz.	
Case style		See dimensions - link at the end of datasheet	DO-5 (DO-203AB)		

Notes

⁽¹⁾ Recommended for pass-through holes

⁽²⁾ Torque must be appliable only to hexagon and not to plastic structure, recommended for holed heatsink

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS		
180°	0.11	0.10				
120°	0.16	0.16				
90°	0.20	0.22	$T_J = T_J$ maximum	K/W		
60°	0.29	0.31				
30°	0.49	0.50				

Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Revision: 11-Jan-18

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

VS-50PF(R)...(W) High Voltage Series

Vishay Semiconductors

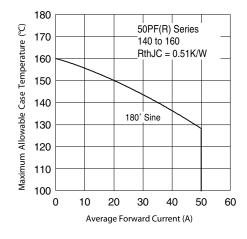


Fig. 1 - Current Ratings Characteristics

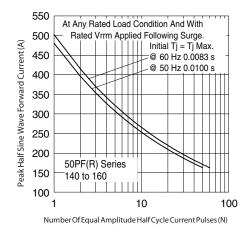


Fig. 2 - Maximum Non-Repetitive Surge Current

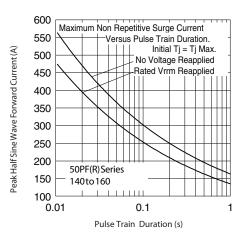


Fig. 3 - Maximum Non-Repetitive Surge Current

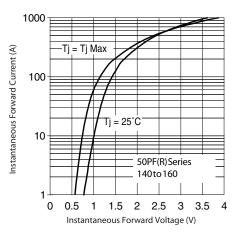


Fig. 4 - Forward Voltage Drop Characteristics

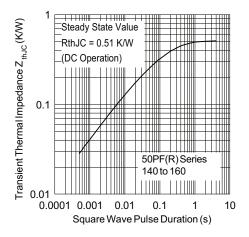


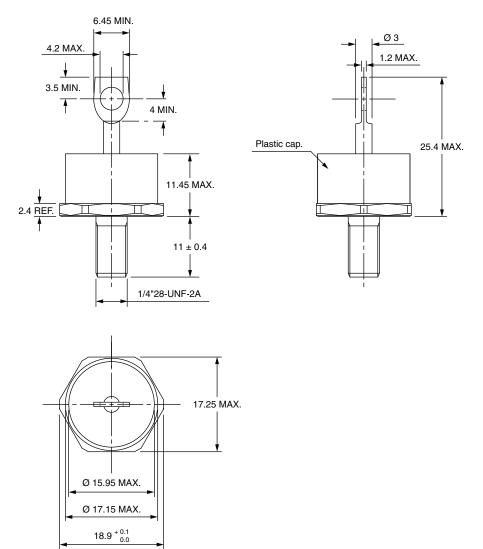
Fig. 5 - Thermal Impedance ZthJC Characteristics

VS-50PF(R)...(W) High Voltage Series

Vishay Semiconductors

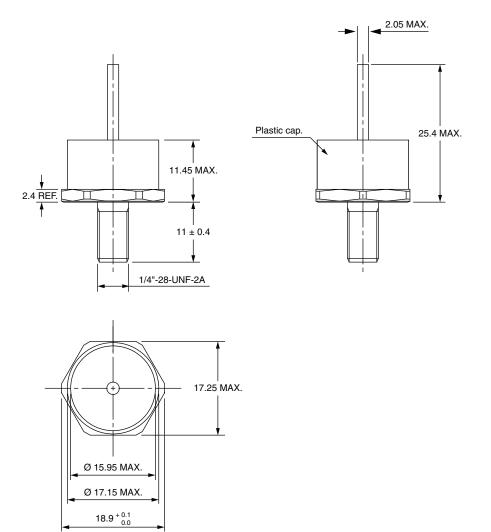
ORDERING INFORMATION TABLE

Device code	vs-	50	PF	R	160	w
		2	3	4	5	6
	1 -	Vish	ay Sem	iconduc	tors pro	duct
	2 -	- 50 =	standa	rd devic	e	
	3 -	- PF = plastic package				
	4 -	• No	one = st	ud norm	nal polar	ity (cath
		• R	= stud r	everse p	oolarity	(anode t
	5 -	· Volt	age cod	le x 10 =	= V _{RRM} (see Volt
	6 -	• No	one = st	andard	terminal	
		(se	ee dime	nsions f	or 50PF	(R) li
		• W	= wire 1	erminal		
		(se	ee dime	nsions f	or 50PF	(R)W -


LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95345		

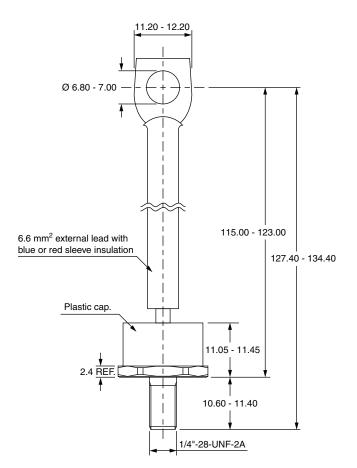
Vishay Semiconductors

DO-203AB (DO-5) for 50PF(R)...(W), 80PF(R)...(W), and 95PF(R)...(W) Series


DIMENSIONS FOR 80PF(R), 50PF(R), AND 95PF(R) SERIES in millimeters

Vishay Semiconductors

DIMENSIONS FOR 80PF(R)...(W), 50PF(R)...(W), AND 95PF(R)...(W) SERIES in millimeters



Outline Dimensions

Vishay Semiconductors

DIMENSIONS FOR 52PF(R), 82PF(R), AND 97PF(R) SERIES in millimeters

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF MUR420GP-TP