


www.vishay.com

# Vishay Semiconductors

# Hyperfast Rectifier, 6 A FRED Pt®



SlimDPAK (TO-252AE)

#### **LINKS TO ADDITIONAL RESOURCES**



| PRIMARY CHARACTERISTICS          |                     |  |  |  |
|----------------------------------|---------------------|--|--|--|
| I <sub>F(AV)</sub>               | 6 A                 |  |  |  |
| V <sub>R</sub>                   | 600 V               |  |  |  |
| V <sub>F</sub> at I <sub>F</sub> | 1.26 V              |  |  |  |
| t <sub>rr</sub> (typ.)           | 14 ns               |  |  |  |
| T <sub>J</sub> max.              | 175 °C              |  |  |  |
| Package                          | SlimDPAK (TO-252AE) |  |  |  |
| Circuit configuration            | Single              |  |  |  |

### **FEATURES**

- Hyperfast recovery time, reduced Q<sub>rr</sub> recovery
- For PFC CCM operation
- Low forward voltage drop, low power losses
- · Low leakage current

ROHS COMPLIANT HALOGEN

 Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C

- Meets JESD 201 class 2 whisker test
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912">www.vishay.com/doc?99912</a>

#### **TYPICAL APPLICATIONS**

These devices are intended for use in PFC boost stage in the AC/DC section of SMPS inverters, or as freewheeling diodes. Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

#### **MECHANICAL DATA**

Case: SlimDPAK (TO-252AE)

Molding compound meets UL 94 V-0 flammability rating

Base PN/-M3 - halogen-free, RoHS-compliant

Terminals: matte tin plated leads, solderable per

J-STD-002

| ABSOLUTE MAXIMUM RATINGS                    |                                   |                                      |             |       |  |
|---------------------------------------------|-----------------------------------|--------------------------------------|-------------|-------|--|
| PARAMETER                                   | SYMBOL                            | TEST CONDITIONS                      | VALUES      | UNITS |  |
| Peak repetitive reverse voltage             | $V_{RRM}$                         |                                      | 600         | V     |  |
| Average rectified forward current           | I <sub>F(AV)</sub>                | T <sub>C</sub> = 140 °C              | 6           | ۸     |  |
| Non-repetitive peak surge current           | I <sub>FSM</sub>                  | $T_J = 25$ °C, 10 ms sine pulse wave | 50          | A     |  |
| Operating junction and storage temperatures | T <sub>J</sub> , T <sub>Stg</sub> |                                      | -55 to +175 | °C    |  |

| <b>ELECTRICAL SPECIFICATIONS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                                  |                                                        |      |      |      |       |
|--------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------|------|------|------|-------|
| PARAMETER                                                                            | SYMBOL                           | TEST CONDITIONS                                        | MIN. | TYP. | MAX. | UNITS |
| Breakdown voltage, blocking voltage                                                  | V <sub>BR</sub> , V <sub>R</sub> | I <sub>R</sub> = 100 μA                                | 600  | -    | -    |       |
| Forward voltage                                                                      | V                                | I <sub>F</sub> = 6 A                                   | -    | 2.5  | 3.10 | V     |
| Forward voitage                                                                      | V <sub>F</sub>                   | I <sub>F</sub> = 6 A, T <sub>J</sub> = 150 °C          | -    | 1.65 | 1.90 |       |
| Reverse leakage current                                                              | 1                                | V <sub>R</sub> = V <sub>R</sub> rated                  | -    | -    | 5    | μA    |
| neverse leakage current                                                              | IR                               | $T_J = 150 ^{\circ}\text{C},  V_R = V_R  \text{rated}$ | -    | -    | 250  |       |
| Junction capacitance                                                                 | C <sub>T</sub>                   | V <sub>R</sub> = 600 V                                 | -    | 10   | -    | pF    |



www.vishay.com

# Vishay Semiconductors

| <b>DYNAMIC RECOVERY CHARACTERISTICS</b> (T <sub>J</sub> = 25 °C unless otherwise specified) |                 |                                                                              |                                                                                       |      |      |      |       |
|---------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------|------|------|-------|
| PARAMETER                                                                                   | SYMBOL          | TEST CONDITIONS                                                              |                                                                                       | MIN. | TYP. | MAX. | UNITS |
|                                                                                             |                 | $I_F = 1 A, dI_F/dt = 5$                                                     | 0 A/μs, V <sub>R</sub> = 30 V                                                         | -    | 16   | -    |       |
|                                                                                             |                 | $I_F = 1 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}, V_R = 30 \text{ V}$ |                                                                                       | -    | 14   | -    | ns    |
| Reverse recovery time                                                                       | t <sub>rr</sub> | I <sub>F</sub> = 0.5 A, I <sub>R</sub> = 1 A, I <sub>RR</sub> = 0.25 A       |                                                                                       | -    | -    | 18   |       |
|                                                                                             |                 | T <sub>J</sub> = 25 °C                                                       | $I_F = 6 \text{ A}$<br>$dI_F/dt = 500 \text{ A/}\mu\text{s}$<br>$V_B = 400 \text{ V}$ | -    | 19   | -    |       |
|                                                                                             |                 | T <sub>J</sub> = 125 °C                                                      |                                                                                       | -    | 40   | -    |       |
| Peak recovery current                                                                       |                 | T <sub>J</sub> = 25 °C                                                       |                                                                                       | -    | 3.8  | -    | ^     |
|                                                                                             | IRRM            | T <sub>J</sub> = 125 °C                                                      |                                                                                       | -    | 6.3  | -    | A     |
| Reverse recovery charge                                                                     | 0               | T <sub>J</sub> = 25 °C                                                       | 1                                                                                     | -    | 40   | -    |       |
|                                                                                             | Q <sub>rr</sub> | T <sub>J</sub> = 125 °C                                                      |                                                                                       | -    | 140  | -    | nC    |

| THERMAL - MECHANICAL SPECIFICATIONS            |                                   |                                |      |      |      |       |
|------------------------------------------------|-----------------------------------|--------------------------------|------|------|------|-------|
| PARAMETER                                      | SYMBOL                            | TEST CONDITIONS                | MIN. | TYP. | MAX. | UNITS |
| Maximum junction and storage temperature range | T <sub>J</sub> , T <sub>Stg</sub> |                                | -55  | -    | 175  | °C    |
| Thermal resistance, junction to mount          | $R_{thJM}$                        |                                | -    | -    | 2.5  | °C/W  |
| Marking device                                 |                                   | Case style SlimDPAK (TO-252AE) |      | 6EV  | 'X06 |       |

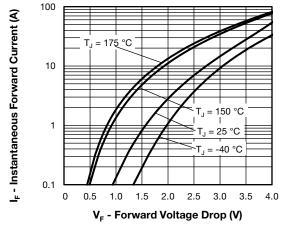



Fig. 1 - Typical Forward Voltage Drop Characteristics

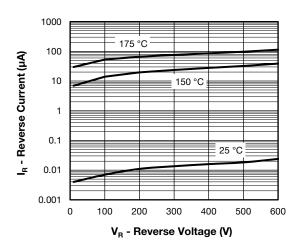



Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage



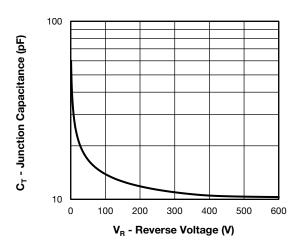



Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

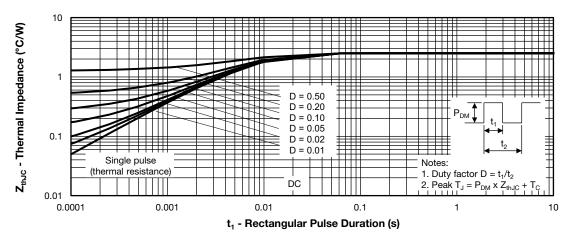



Fig. 4 - Maximum Thermal Impedance Z<sub>thJC</sub> Characteristics

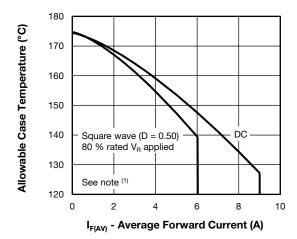



Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

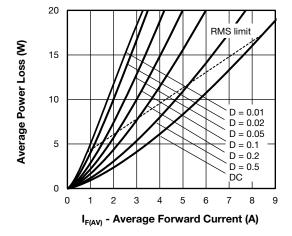



Fig. 6 - Forward Power Loss Characteristics

#### Note

Formula used:  $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$ ; Pd = forward power loss =  $I_{F(AV)} \times V_{FM}$  at  $(I_{F(AV)}/D)$  (see fig. 6); Pd<sub>REV</sub> = inverse power loss =  $V_{R1} \times I_R$  (1 - D);  $I_R$  at  $V_{R1}$  = rated  $V_R$ 



### www.vishay.com

### Vishay Semiconductors

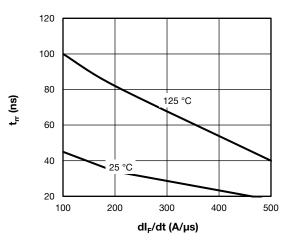



Fig. 7 - Typical Reverse Recovery Time vs. dl<sub>F</sub>/dt

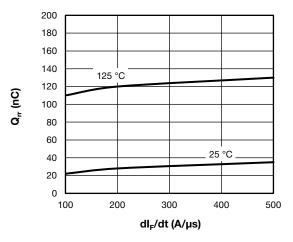
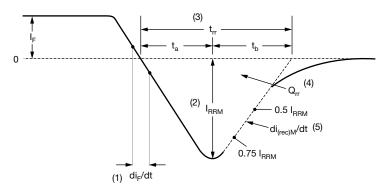



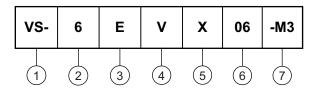

Fig. 8 - Typical Stored Charge vs. dl<sub>F</sub>/dt



- (1) di<sub>F</sub>/dt rate of change of current through zero crossing
- (2) I<sub>RRM</sub> peak reverse recovery current
- (3)  $\rm t_{rr}$  reverse recovery time measured from zero crossing point of negative going  $\rm l_F$  to point where a line passing through 0.75  $\rm l_{RRM}$  and 0.50  $\rm l_{RRM}$  extrapolated to zero current.
- (4)  $\mathbf{Q}_{rr}$  area under curve defined by  $\mathbf{t}_{rr}$  and  $\mathbf{I}_{RRM}$

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(5) di<sub>(rec)M</sub>/dt - peak rate of change of current during t<sub>b</sub> portion of t<sub>rr</sub>


Fig. 9 - Reverse Recovery Waveform and Definitions



# Vishay Semiconductors

#### **ORDERING INFORMATION TABLE**

Device code



1 - Vishay Semiconductors product

2 - Current rating (6 = 6 A)

Circuit configuration:

E = single die

4 - V = SlimDPAK

5 - Process type:

X = hyperfast recovery

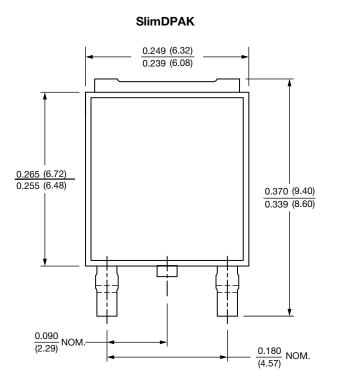
6 - Voltage code (06 = 600 V)

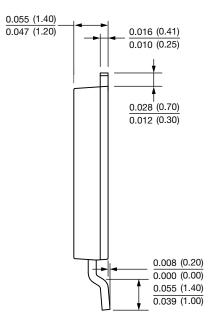
7 - Environmental digit:

M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free

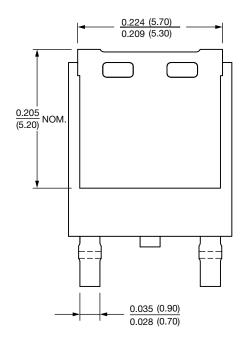
| ORDERING INFORMATION (Example) |                 |                        |               |                                   |  |  |
|--------------------------------|-----------------|------------------------|---------------|-----------------------------------|--|--|
| PREFERRED P/N                  | UNIT WEIGHT (g) | PREFERRED PACKAGE CODE | BASE QUANTITY | PACKAGING DESCRIPTION             |  |  |
| VS-6EVX06-M3/I                 | 0.20            | I                      | 4500          | 13"diameter plastic tape and reel |  |  |

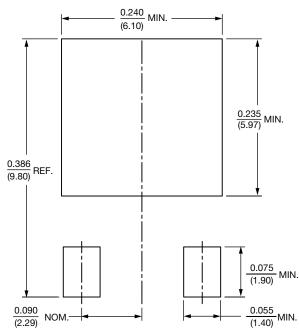
| LINKS TO RELATED DOCUMENTS                 |                          |  |  |
|--------------------------------------------|--------------------------|--|--|
| Dimensions <u>www.vishay.com/doc?96081</u> |                          |  |  |
| Part marking information                   | www.vishay.com/doc?96085 |  |  |
| Packaging information                      | www.vishay.com/doc?88869 |  |  |




# Vishay Semiconductors


### **SlimDPAK**


### **DIMENSIONS** in inches (millimeters)





### **Mounting Pad Layout**







### **Legal Disclaimer Notice**

Vishay

### **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

# **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F

RRE02VS6SGTR 067907F MS306 70HF40 T110HF60 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF

ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077

85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K

VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358