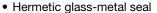


www.vishay.com


Vishay Semiconductors

Phase Control Thyristors (Stud Version), 80 A

PRODUCT SUMMARY				
I _{T(AV)}	80 A			
V _{DRM} /V _{RRM}	400 V, 800 V, 1200 V			
V _{TM}	1.60 V			
I _{GT}	120 mA			
TJ	-40 °C to 125 °C			
Package	TO-209AC (TO-94)			
Diode variation	Single SCR			

FEATURES

- International standard case TO-209AC (TO-94)
- · Designed and qualified for industrial level
- Material categorization: For definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER	TEST CONDITIONS	VALUES	UNITS		
1		80	A		
I _{T(AV)}	T _C	85	°C		
I _{T(RMS)}		125			
	50 Hz	1900	A		
ITSM	60 Hz	1990			
.0.	50 Hz	18	1.42-		
I ² t	60 Hz	16	kA ² s		
V _{DRM} /V _{RRM}		400 to 1200	V		
tq	Typical	110	μs		
T _J		-40 to 125	°C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I _{DRM} /I _{RRM} MAXIMUM AT T _J = 125 °C mA			
	40	400	500				
VS-80RIA VS-81RIA	80	800	900	15			
	120	1200	1300				

www.vishay.com

Vishay Semiconductors

PARAMETER	SYMBOL		TEST CON	IDITIONS	VALUES	UNITS
PARAMETER	STIVIBUL	TEST CONDITIONS		IDITIONS	VALUES	UNITS
Maximum average on-state current	I _{T(AV)}	180° conduction, half sine wave		/ave	80	Α
at case temperature	'I(AV)	100 condu	otion, nan onio w	avo	85	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 75 °C	case temperatu	re	125	
		t = 10 ms	No voltage		1900	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		1990	A kA ² s
non-repetitive surge current		t = 10 ms	100 % V _{RRM}		1600	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	1675	
Maximum I ² t for fusing		t = 10 ms	No voltage	initial $T_J = T_J$ maximum	18	
	l ² t	t = 8.3 ms			16	
		t = 10 ms			12.7	
		t = 8.3 ms	reapplied		11.7	
Maximum I ² √t for fusing	I²√t	t = 0.1 ms to 10 ms, no voltage reapplied		age reapplied	180.5	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), $T_J = T_J$ maximum		$I_{T(AV)}$), $T_J = T_J$ maximum	0.99	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		um	1.13	V
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), $T_J = T_J$ maximum		$I_{T(AV)}$), $T_J = T_J$ maximum	2.29	~ 0
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		1.84	mΩ	
Maximum on-state voltage	V_{TM}	$I_{pk} = 250 \text{ A}, T_J = 25 \text{ °C}, t_p = 10 \text{ ms sine pulse}$		1.60	V	
Maximum holding current	I _H			W resistive lead	200	A
Typical latching current	ΙL	T _J = 25 °C, anode supply 12 V resistive load 400		400	mA	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	T_J = 125 °C, V_d = Rated V_{DRM} , I_{TM} = 2 x dI/dt snubber 0.2 μF, 15 Ω , gate pulse: 20 V, 65 Ω , t_p = 6 μs, t_r = 0.5 μs Per JEDEC standard RS-397, 5.2.2.6.	300	A/µs
Typical delay time	t _d	Gate pulse: 10 V, 15 Ω source, t_p = 6 μ s, t_r = 0.1 μ s, V_d = Rated V_{DRM} , I_{TM} = 50 Adc, T_J = 25 °C	1	
Typical turn-off time	tq	I_{TM} = 50 A, T_J = T_J maximum, dI/dt = - 5 A/μs, V_R = 50 V, dV/dt = 20 V/μs, gate bias: 0 V 25 Ω , t_p = 500 μs	110	μs

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	T _J = 125 °C exponential to 67 % rated V _{DRM}	500	V/µs	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	T _J = 125 °C rated V _{DRM} /V _{RRM} applied	15	mA	

www.vishay.com

Vishay Semiconductors

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum peak gate power	P _{GM}	$T_J = T_J$ maximum.	, t _p ≤ 5 ms	12	W
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum.	, f = 50 Hz, d% = 50	3	VV
Maximum peak positive gate current	I _{GM}			3	Α
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J \text{ maximum}$, $t_p \le 5 \text{ ms}$	20	
Maximum peak negative gate voltage	- V _{GM}			10	V
	I _{GT}	T _J = - 40 °C	Maximum required gate trigger/ current/voltage are the lowest value which will trigger all units 6 V anode to cathode applied	270	mA
Maximum DC gate current required to trigger		T _J = 25 °C		120	
		T _J = 125 °C		60	
	V _{GT}	T _J = - 40 °C		3.5	
Maximum DC gate voltage required to trigger		T _J = 25 °C		2.5	V
		T _J = 125 °C		1.5	
DC gate current not to trigger	I _{GD}	T. T. man and discounts	Maximum gate current/voltage not to trigger is the maximum value which	6	mA
DC gate voltage not to trigger	V_{GD}	$T_J = T_J$ maximum will not trigger any unit with rated V_{DRM} anode to cathode applied		0.25	V

THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum operating junction temperature range	T _J		- 40 to 125	°C
Maximum storage temperature range	T _{Stg}		- 40 to 150	
Maximum thermal resistance, junction to case	R _{thJC}	DC operation	0.30	K/W
Maximum thermal resistance, case to heatsink	R _{thCS}	Mounting surface, smooth, flat and greased	0.1	r\/ vv
Mounting torque + 10 %		Non-lubricated threads	15.5 (137)	N⋅m
Mounting torque, ± 10 %		Lubricated threads	14 (120)	(lbf · in)
Approximate weight			130	g
Case style		See dimensions - link at the end of datasheet	TO-209AC	(TO-94)

△R _{th} JC CONDUCTION						
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS		
180°	0.042	0.030				
120°	0.050	0.052				
90°	0.064	0.070	$T_J = T_J$ maximum	K/W		
60°	0.095	0.100				
30°	0.164	0.165				

Note

The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

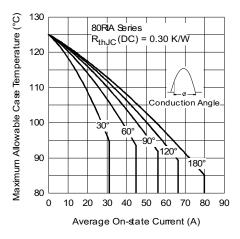


Fig. 1 - Current Ratings Characteristics

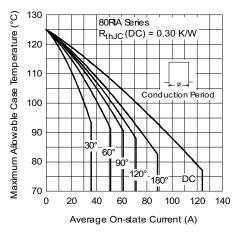


Fig. 2 - Current Ratings Characteristics

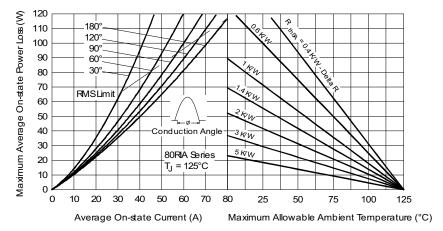


Fig. 3 - On-State Power Loss Characteristics

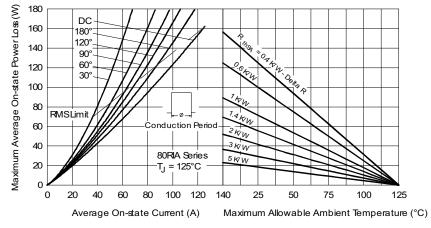


Fig. 4 - On-State Power Loss Characteristics

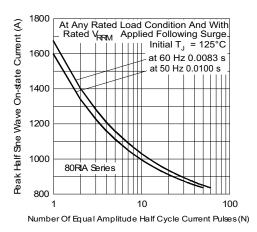


Fig. 5 - Maximum Non-Repetitive Surge Current

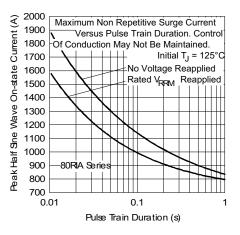


Fig. 6 - Maximum Non-Repetitive Surge Current

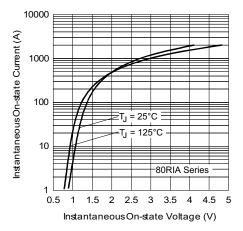


Fig. 7 - On-State Voltage Drop Characteristics

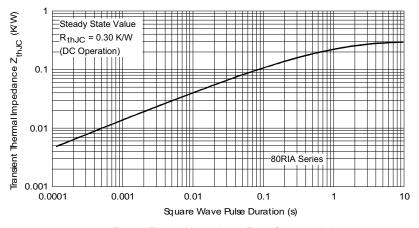
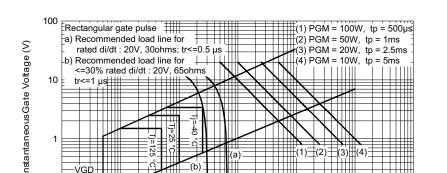
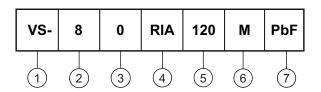



Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

Vishay Semiconductors

Instantaneous Gate Current (A)

Fig. 9 - Gate Characteristics


Device: 80RIA Series

ORDERING INFORMATION TABLE

Device code

0.1 - 0.001

www.vishay.com

- 1 Vishay Semiconductors product
- | **2** | I_{TAV} x 10 A

IGD

0.01

- **3** • 0 = Eyelet terminals (gate and auxiliary cathode leads)
 - 1 = Fast-on terminals (gate and auxiliary cathode leads)

Frequency Limited by PG(AV)

100

1000

- 2 = Flag terminals (gate and auxiliary cathode terminals)
- 4 RIA = Essential part number
- 5 Voltage code x 100 = V_{RRM} (see Voltage Ratings table)
- None = Stud base 1/2"-20UNF- 2 A threads
 - M = Stud base metric threads M12 x 1.75 E 6
- 7 None = Standard production
 - PbF = Lead (Pb)-free

LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95362

Vishay Semiconductors

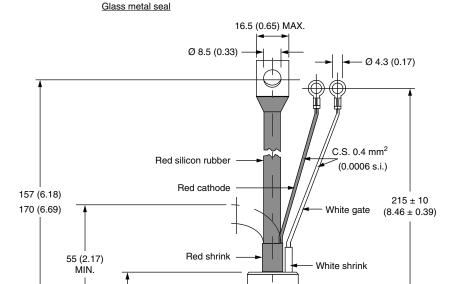
TO-209AC (TO-94) for 80RIA Series

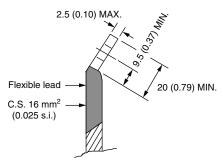
Ø 23.5 (0.92) MAX.

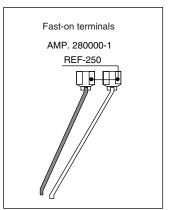
SW 27

1/2"-20UNF-2A

29.5 (1.16) MAX.


DIMENSIONS in millimeters (inches)


24 (0.94)


MAX.

10.0 (0.39) MAX.

21 (0.83) MAX.

Document Number: 95362 Revision: 17-Sep-10

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCRs category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

NTE5428 T1500N16TOF VT T880N16TOF TT162N16KOF-A TT162N16KOF-K TT330N16AOF VS-22RIA20 VS-2N685 057219R

T1190N16TOF VT T1220N22TOF VT T201N70TOH T700N22TOF T830N18TOF TT250N12KOF-K VS-110RKI40 NTE5427 NTE5442

T2160N28TOF VT TT251N16KOF-K VS-22RIA100 VS-16RIA40 TD250N16KOF-A VS-ST110S16P0 T930N36TOF VT T2160N24TOF

VT T1190N18TOF VT T1590N28TOF VT 2N1776A T590N14TOF NTE5375 NTE5460 NTE5481 NTE5512 NTE5514 NTE5518

NTE5519 NTE5529 NTE5553 NTE5555 NTE5557 NTE5567 NTE5570 NTE5570 NTE5574 NTE5576 NTE5578 NTE5579 NTE5589

NTE5592