Vishay Semiconductors

www.vishay.com

Hyperfast Rectifier, 2 x 4 A FRED Pt®

LINKS TO ADDITIONAL RESOURCES

PRIMARY CHARACTERISTICS						
I _{F(AV)}	2 x 4 A					
V _R	200 V					
V _F at I _F	0.7 V					
t _{rr (typ.)}	25 ns					
T _J max.	175 °C					
Package	FlatPAK 5 x 6					
Circuit configuration	Separated cathode					

FEATURES

- Hyperfast recovery time, reduced Q_{rr}, and soft recovery
- 175 °C maximum operating junction temperature
- Specific for output and snubber operation
- Low forward voltage drop
- · Low leakage current
- AEC-Q101 qualified
- Meets MSL level 1 per J-STD-020, LF maximum peak of 260 $^\circ\mathrm{C}$
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

DESCRIPTION / APPLICATIONS

State of the art hyperfast recovery rectifiers specifically designed with optimized performance of forward voltage drop and hyperfast recovery time.

The planar structure and the platinum doped life time control guarantee the best overall performance, ruggedness, and reliability characteristics.

These devices are intended for use in snubber, boost, piezo-injection, as high frequency rectifiers, and freewheeling diodes.

The extremely optimized stored charge and low recovery current minimize the switching losses and reduce power dissipation in the switching element.

MECHANICAL DATA

Case: FlatPAK 5 x 6 Molding compound meets UL 94 V-0 flammability rating

Halogen-free, RoHS-compliant

Terminals: matte tin plated leads, solderable per J-STD-002, meets JESD 201 class 2 whisker test

ABSOLUTE MAXIMUM RATINGS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Peak repetitive reverse voltage		V _{RRM}		200	V			
Average rectified forward current	per device	1	T _{Solderpad} = 170 °C, DC	- 8	А			
Average rectilied forward current	per device	I _{F(AV)}	T _{Solderpad} = 169 °C, D = 0.5					
Non-repetitive peak surge current	per device		T _{.1} = 25 °C, 10 ms sinusoidal pulse	173	A			
Non-repetitive peak surge current	per diode	IFSM	1J = 23 °C, 10 mis sinusoidai puise	87				
Operating junction and storage temp	eratures	T _J , T _{Stg}		-55 to +175	°C			

ELECTRICAL SPECIFICATIONS ($T_J = 25$ °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS			
Breakdown voltage, blocking voltage	V_{BR} , V_{R}	I _R = 100 μA	200	-	-				
Forward valtage, per diade	V _F	$I_F = 4 A$	-	0.87	0.96	V			
Forward voltage, per diode		I _F = 4 A, T _J = 150 °C	-	0.7	0.78				
Reverse leakage current, per diode	1	$V_{R} = V_{R}$ rated	-	-	2				
neverse leakage current, per diode	IR	T _J = 150 °C, V _R = V _R rated	-	7	80	μA			
Junction capacitance	CT	V _R = 200 V	-	19	-	pF			

Revision: 29-Jan-2021

1

Document Number: 96088

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

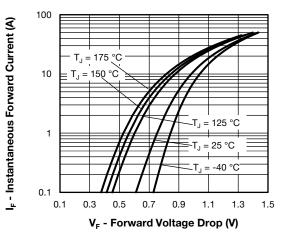
HALOGEN

FREE

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)									
PARAMETER	SYMBOL	TEST CO	MIN.	TYP.	MAX.	UNITS			
		$I_{\rm F} = 1.0 \text{ A}, \text{ d}I_{\rm F}/\text{dt} =$	= 50 A/µs, V _R = 30 V	-	20	-			
Bowerse receiver time	+	I _F = 0.5 A, I _R = 1 A, I _{rr} = 0.25 A		-	-	25			
Reverse recovery time	t _{rr}	T _J = 25 °C		-	17	-	ns		
		T _J = 125 °C		-	29	-			
Deels receivers ourrent		T _J = 25 °C	I _F = 4 A dI _F /dt = 200 A/μs V _B = 160 V	-	2.1	-	А		
Peak recovery current	I _{RRM}	T _J = 125 °C		-	4	-	A		
	Q _{rr}	T _J = 25 °C		-	18	-	nC		
Reverse recovery charge		T _J = 125 °C		-	60	-	nc		

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS		
Maximum junction and storage temperature range	T _J , T _{Stg}		-55	-	175	°C		
Thermal resistance, junction to ambient, per diode	R _{thJA} ⁽¹⁾⁽²⁾		-	89	103	°C/W		
Thermal resistance, junction to mount, per diode	R _{thJM} ⁽³⁾		-	1.8	2.1	0/10		


Notes

 $^{(1)}$ The heat generated must be less than the thermal conductivity from junction to ambient: $dP_D/dT_J < 1/R_{thJA}$

 $^{(2)}$ Free air, mounted or recommended copper pad area; thermal resistance R_{thJA} - junction to ambient

⁽³⁾ Mounted on infinite heatsink

Vishay Semiconductors

www.vishay.com

SHAY,

Fig. 1 - Typical Forward Voltage Drop Characteristics

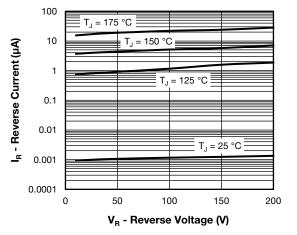


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

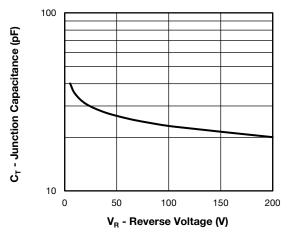


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

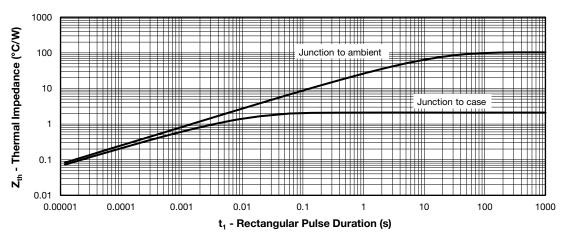
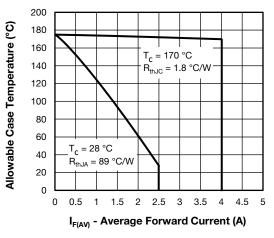



Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Revision: 29-Jan-2021

Vishay Semiconductors

www.vishay.com

SHAY

Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

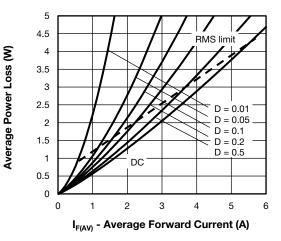


Fig. 6 - Forward Power Loss Characteristics

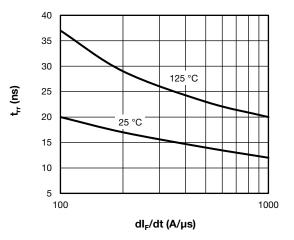


Fig. 7 - Typical Reverse Recovery Time vs. dI_F/dt

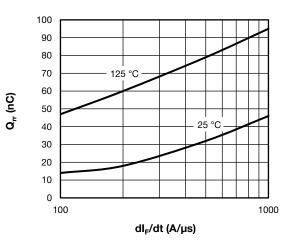


Fig. 8 - Typical Stored Charge vs. dl_F/dt

Document Number: 96088

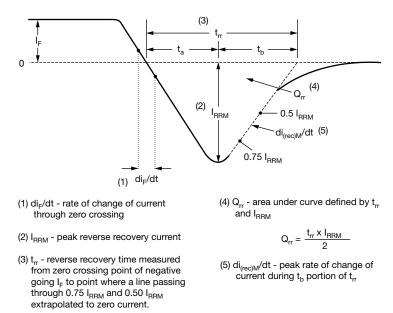


Fig. 9 - Reverse Recovery Waveform and Definitions

4

Revision: 29-Jan-2021

Vishay Semiconductors

www.vishay.com

ORDERING INFORMATION TABLE

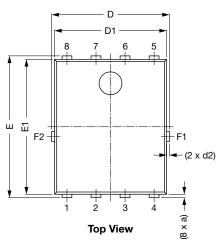
VISHAY

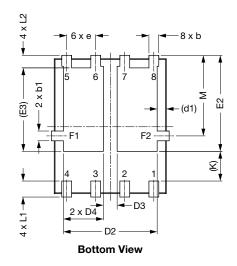
Device code	VS-	8	D	к	Н	02	Н	М3
		2	3	4	5	6	7	8
	브		-	nicondu	•	oduct		
				ng (8 = iguratio	-			
	4			ted cath ≺ packa				
	H		cess typ	•	ye			
		H =	hyper f	ast reco	very			
	6	- Vol	tage coo	de (02 =	200 V)			
	7	- H=	AEC-Q	101 qua	lified			
	8	- M3	= halog	en-free,	RoHS-0	complia	nt, and	termina

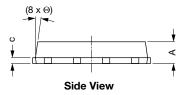
ORDERING INFORMATION (example)								
PREFERRED P/N UNIT WEIGHT (g) PREFERRED PACKAGE CODE BASE QUANTITY PACKAGING								
VS-8DKH02HM3/H	0.10	Н	1500	7"diameter plastic tape and reel				
VS-8DKH02HM3/I	0.10	I	6000	13" diameter plastic tape and reel				

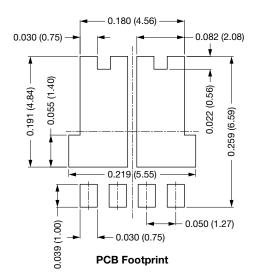
LINKS TO RELATED DOCUMENTS						
Dimensions	www.vishay.com/doc?96056					
Part marking information	www.vishay.com/doc?96059					
Packaging information	www.vishay.com/doc?88869					

5




Outline Dimensions


Vishay Semiconductors


FlatPAK 5 x 6 (Dual)

DIMENSIONS in inches (millimeters)

DIM		INCHES		MILLIMETERS				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.035	0.039	0.043	0.89	0.99	1.09		
(a)	-	0.006	-	-	0.15	-		
b	0.013	0.017	0.020	0.32	0.43	0.52		
b1	0.013	0.017	0.020	0.32	0.43	0.52		
С	0.008	-	0.014	0.20	-	0.35		
D	0.197	0.203	0.209	5.00	5.15	5.30		
D1	0.189	0.193	0.197	4.80	4.90	5.00		
D2	0.154	0.161	0.169	3.90	4.10	4.30		
D3	0.020	0.024	0.031	0.50	0.60	0.80		
D4	0.063	0.069	0.075	1.60	1.75	1.90		
(d1)	-	0.016	-	-	0.40	-		
(d2)	-	0.005	-	-	0.125	-		
E	0.238	0.244	0.250	6.05	6.20	6.35		

Revision: 27-Mar-18

1

Document Number: 96056

Outline Dimensions

www.vishay.com

Vishay Semiconductors

DIM.		INCHES			MILLIMETERS	RS	
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
E1	0.228	0.232	0.236	5.80	5.90	6.00	
E2	0.157	0.165	0.173	4.00	4.20	4.40	
(E3)	-	0.144	-	-	3.65	-	
е		0.050 BSC		1.27 BSC			
(K)	0.039	-	-	1.00	-	-	
L1	0.019	-	0.043	0.48	-	1.10	
L2	0.012	-	0.031	0.30	-	0.80	
М	0.128	0.138	0.148	3.25	3.50	3.75	
Θ	0°	-	10°	0°	-	10°	

Notes

• Dimensioning and tolerancing per ASME Y14.5-2009

• Dimensions D1 and E1 do not include mold flash or gate burrs

• Dimension (XX) means reference only

www.vishay.com

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2021 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 70HFR40
 RL252-TP
 150KR30A
 1N5397
 NTE5841
 NTE6038
 SCF5000
 1N4002G
 1N4005-TR
 JANS1N6640US
 481235F

 RRE02VS6SGTR
 067907F
 MS306
 70HF40
 T110HF60
 T85HFL60S02
 US2JFL-TP
 A1N5404G-G
 CRS04(T5L,TEMQ)
 ACGRA4007-HF

 ACGRB207-HF
 CLH03(TE16L,Q)
 ACGRC307-HF
 ACEFC304-HF
 NTE6356
 NTE6359
 NTE6002
 NTE6023
 NTE6039
 NTE6077

 85HFR60
 40HFR60
 1N1186RA
 70HF120
 85HFR80
 D126A45C
 SCF7500
 D251N08B
 SCHJ22.5K
 SM100
 SCPA2
 SCH10000
 SDHD5K

 VS-12FL100S10
 ACGRA4001-HF
 D1821SH45T PR
 D1251S45T
 NTE5990
 NTE6358