
IGBT SIP Module (Fast IGBT)

IMS-2

PRIMARY CHARACTERISTICS						
OUTPUT CURRENT IN A TYPICAL 5.0 kHz MOTOR DRIVE						
$V_{\sf CES}$	600 V					
I_{RMS} per phase (3.1 kW total) with $T_C = 90 ^{\circ}C$						
T _J 125 °C						
Supply voltage	360 V _{DC}					
Power factor	0.8					
Modulation depth (see fig. 1)	115 %					
$V_{CE(on)}$ (typical) at $I_C = 8.7$ A, 25 °C	1.37 V					
Speed	1 kHz to 10 kHz					
Package	SIP					
Circuit configuration	Three phase inverter					

FEATURES

· Switching-loss rating includes all "tail" losses

ROHS

- HEXFRED® soft ultrafast diodes
- Optimized for medium speed 1 kHz to 10 kHz, see fig. 1 for current vs. frequency curve
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The IGBT technology is the key to Vishay's Semiconductors advanced line of IMS (insulated metal substrate) power modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to motor drive applications and where space is at a premium.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current, each IGBT		T _C = 25 °C	16		
	I _C	T _C = 100 °C	8.7		
Pulsed collector current	I _{CM} ⁽¹⁾		50	Α	
Clamped inductive load current	I _{LM} (2)		50	A	
Diode continuous forward current	I _F	T _C = 100 °C	6.1		
Diode maximum forward current	I _{FM}		50		
Gate to emitter voltage	V_{GE}		± 20	V	
Isolation voltage	V _{ISOL}	Any terminal to case, t = 1 min	2500	V_{RMS}	
Maximum navvar dissination and ICDT	В	T _C = 25 °C	36	W	
Maximum power dissipation, each IGBT	P_{D}	$T_{C} = 100 ^{\circ}C$]	
Operating junction and storage temperature range	T _J , T _{Stg}	-40		°C	
Soldering temperature	_	For 10 s, (0.063" (1.6 mm) from case) 30		C	
Mounting torque		6-32 or M3 screw	5 to 7 (0.55 to 0.8)	lbf · in (N · m)	

Notes

⁽¹⁾ Repetitive rating; V_{GE} = 20 V, pulse width limited by maximum junction temperature (see fig. 20)

 $^{^{(2)}}$ V_{CC} = 80 % (V_{CES}), V_{GE} = 20 V, L = 10 μ H, R_g = 22 Ω (see fig. 19)

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TYP.	MAX.	UNITS	
Junction to case, each IGBT, one IGBT in conduction	R _{thJC}	-	3.5		
Junction to case, each DIODE, one DIODE in conduction	R_{thJC}	-	5.5	°C/W	
Case to sink, flat, greased surface	R _{thCS}	0.10	-		
Weight of module		20	-	g	
Weight of module		0.7	-	oz.	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Collector to emitter breakdown voltage	V _{(BR)CES} (1)	$V_{GE} = 0 \text{ V}, I_{C} = 250 \mu\text{A}$	V _{GE} = 0 V, I _C = 250 μA		-	-	V
Temperature coefficient of breakdown voltage	$\Delta V_{(BR)CES}/\Delta T_J$	$V_{GE} = 0 \text{ V}, I_{C} = 1.0 \text{ mA}$		-	0.69	-	V/°C
Collector to emitter saturation voltage	V _{CE(on)}	I _C = 8.7 A	V _{GE} = 15 V see fig. 2, 5	-	1.37	1.5	V
		I _C = 16 A		-	1.63	-	
		I _C = 8.7 A, T _J = 150 °C	300 fig. 2, 3	-	1.37	-	V
Gate threshold voltage	V _{GE(th)}	V - V I - 250 HA		3.0	-	6.0	
Temperature coefficient of threshold voltage	$\Delta V_{GE(th)}/\Delta T_{J}$	$V_{CE} = V_{GE}$, $I_C = 250 \mu A$		-	- 11	-	mV/°C
Forward transconductance	9 _{fe} ⁽²⁾	V _{CE} = 100 V, I _C = 8.7 A		6.0	8.0	-	S
Zero gate voltage collector current	I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$		-	-	250	μΑ
		$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V},$	T _J = 150 °C	-	-	2500	μΑ
Diode forward voltage drop	V _{FM}	I _C = 12 A	see fig. 13	-	1.3	1.7	V
		I _C = 12 A, T _J = 150 °C		-	1.2	1.6	V
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V		-	-	± 100	nA

Notes

 $^{^{(1)}~}$ Pulse width $\leq 80~\mu s,~duty~factor \leq 0.1~\%$

⁽²⁾ Pulse width 5.0 µs; single shot

PARAMETER	SYMBOL	T	EST CONDIT	IONS	MIN.	TYP.	MAX.	UNITS
Total gate charge (turn-on)	Qg	$I_{\rm C} = 8.7 \; {\rm A}$			-	54	82	
Gate to emitter charge (turn-on)	Q _{ge}		V _{CC} = 400 V		-	8.1	12	nC
Gate to collector charge (turn-on)	Q _{gc}	V _{GE} = 15 V see fig. 8			-	21	32]
Turn-on delay time	t _{d(on)}				-	39	-	
Rise time	t _r	T _{.1} = 25 °C	T ₁ = 25 °C				-	_
Turn-off delay time	t _{d(off)}	$I_{\rm C} = 8.7 \text{A, V}$			-	220	330	ns
Fall time	t _f	V _{GE} = 15 V,		l" and diode	-	160	240	
Turn-on switching loss	Eon		Energy losses include "tail" and diode reverse recovery. see fig. 9, 10, 11, 18				-	
Turn-off switching loss	E _{off}	see fig. 9, 10					-	mJ
Total switching loss	E _{ts}	1					1.3	
Turn-on delay time	t _{d(on)}	T _J = 150 °C,	-	37	-			
Rise time	t _r	$I_{\rm C} = 8.7 \text{A, V}$	$I_C = 8.7 \text{ A}, V_{CC} = 480 \text{ V}$				-	
Turn-off delay time	t _{d(off)}	V_{GE} = 15 V, R_{G} = 22 Ω Energy losses include "tail" and diode reverse recovery			-	400	-	ns
Fall time	t _f				-	290	-	
Total switching loss	E _{ts}	see fig. 9, 10	see fig. 9, 10, 11, 18			1.57	-	mJ
Input capacitance	C _{ies}	V _{GE} = 0 V	V _{GE} = 0 V V _{CC} = 30 V f = 1.0 MHz		-	1100	-	
Output capacitance	Coes				-	74	-	pF
Reverse transfer capacitance	C _{res}	see fig. 7	-		-	14	-	
Diada assaultina		T _J = 25 °C	E- 11		-	42	60	
Diode reverse recovery time	t _{rr}	T _J = 125 °C	see fig. 14	see fig. 14	-	80	120	ns
Diada pagla valvava vaga vaga abava		T _J = 25 °C	$T_{J} = 25 \degree C$ $T_{J} = 125 \degree C$ see fig. 15		-	3.5	6.0	Α
Diode peak reverse recovery charge	I _{rr}	T _J = 125 °C		See fig. 15 $I_F = 12 \text{ A}$ $V_B = 200 \text{ V}$	-	5.6	10	
Diada rayaraa ragayany aharaa	0	T _J = 25 °C		dl/dt = 200 A/μs	-	80	180	nC
Diode reverse recovery charge	Q_{rr}	T _J = 125 °C		See lig. 10		220	600	IIC
Diode peak rate of fall of recovery	dl _{(rec)M} /dt	T _J = 25 °C	see fig. 17		-	180	-	A/µs
during t _b	ai(rec)M/at	T _J = 125 °C see fig. 1	366 lig. 17	56 lig. 17	-	116	-	Ανμο

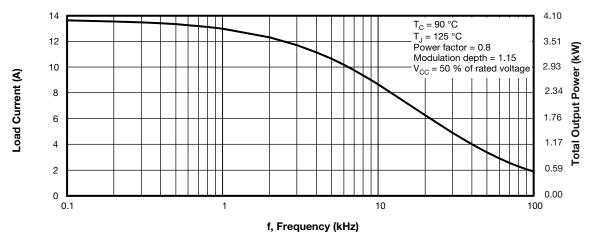
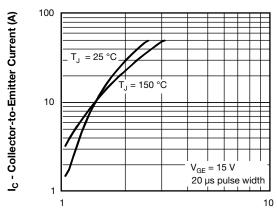



Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of Fundamental)

V_{CF} - Collector-to-Emitter Voltage (V)

Fig. 2 - Typical Output Characteristics

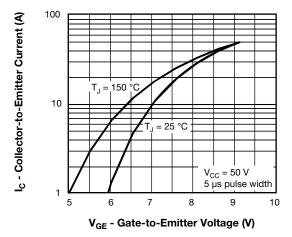


Fig. 3 - Typical Transfer Characteristics

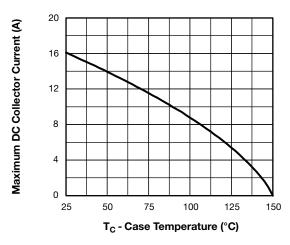


Fig. 4 - Maximum Collector Current vs. Case Temperature

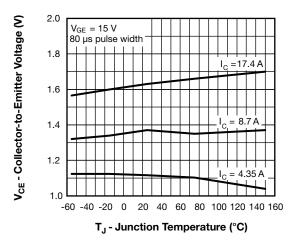


Fig. 5 - Typical Collector to Emitter Voltage vs. Junction Temperature

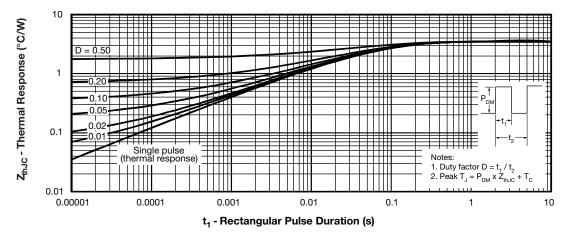


Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction to Case

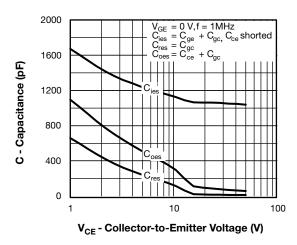


Fig. 7 - Typical Capacitance vs. Collector to Emitter Voltage

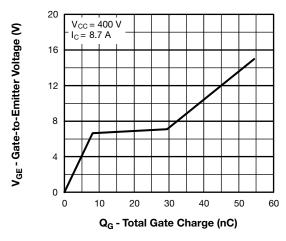


Fig. 8 - Typical Gate Charge vs. Gate to Emitter Voltage

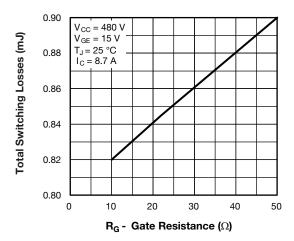


Fig. 9 - Typical Switching Losses vs. Gate Resistance

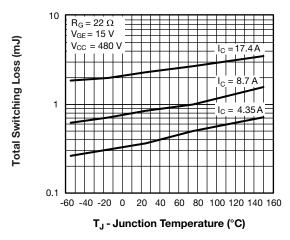


Fig. 10 - Typical Switching Losses vs. Junction Temperature

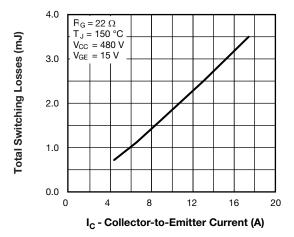


Fig. 11 - Typical Switching Losses vs. Collector to Emitter Current

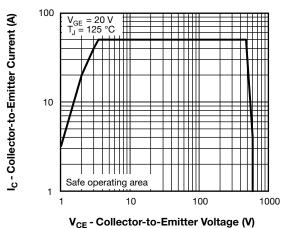


Fig. 12 - Turn-Off SOA

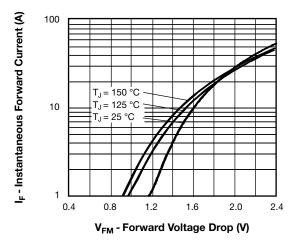


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current

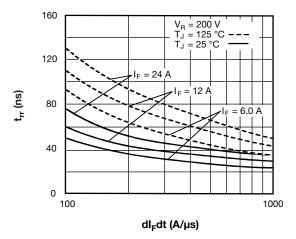


Fig. 14 - Typical Reverse Recovery Time vs. dl_F/dt

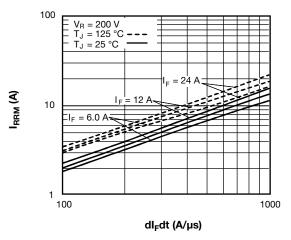


Fig. 15 - Typical Recovery Current vs. dl_E/dt

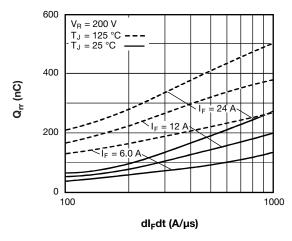


Fig. 16 - Typical Stored Charge vs. dI_F/dt

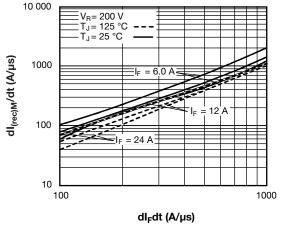


Fig. 17 - Typical $dI_{(rec)M}/dt$ vs dI_F/dt

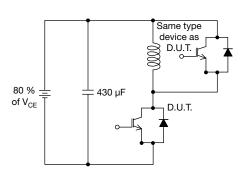


Fig.18a - Test Circuit for Measurements of I_{LM} , E_{on} , $E_{off(diode)}$, t_{rr} , Q_{rr} , I_{rr} , $t_{d(on)}$, t_r , $t_{d(off)}$, t_f

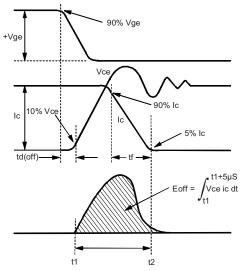


Fig.18c - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

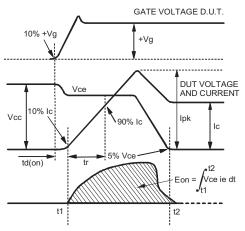


Fig.18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{on},\,t_{d(on)},\,t_{r}$

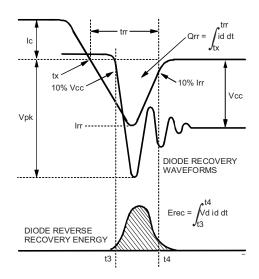


Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining E_{rec} , t_{rr} , Q_{rr} , I_{rr}

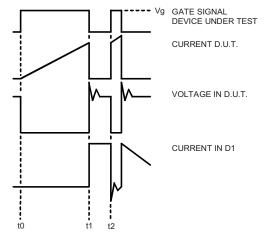


Fig.18e - Macro Waveforms for Figure 18a's Test Circuit

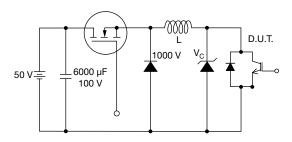


Fig.19 - Clamped Inductive Load Test Circuit

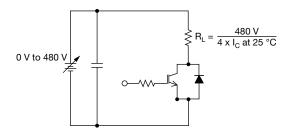
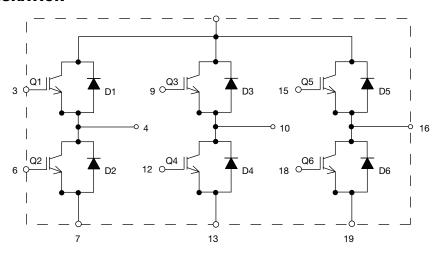



Fig. 20 - Pulsed Collector Current Test Circuit

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95066			

IMS-2 (SIP)

DIMENSIONS in millimeters (inches)

IMS-2 Package Outline (13 Pins)

Notes

- $^{(1)}$ Tolerance uless otherwise specified \pm 0.254 mm (0.010")
- (2) Controlling dimension: inch
- (3) Terminal numbers are shown for reference only

Document Number: 95066 Revision: 30-Jul-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for IGBT Transistors category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

 748152A
 APT20GT60BRDQ1G
 NGTB10N60FG
 STGFW20V60DF
 APT30GP60BG
 APT45GR65B2DU30
 GT50JR22(STA1ES)

 TIG058E8-TL-H
 VS-CPV364M4KPBF
 NGTB25N120FL2WAG
 NGTG40N120FL2WG
 RJH60F3DPQ-A0#T0
 APT40GR120B2SCD10

 APT15GT120BRG
 APT20GT60BRG
 NGTB75N65FL2WAG
 NGTG15N120FL2WG
 IXA30RG1200DHGLB
 IXA40RG1200DHGLB

 APT70GR65B2DU40
 NTE3320
 IHFW40N65R5SXKSA1
 APT70GR120J
 APT35GP120JDQ2
 IKZA40N65RH5XKSA1

 IKFW75N65ES5XKSA1
 IKFW50N65ES5XKSA1
 IKFW50N65EH5XKSA1
 IKFW40N65ES5XKSA1
 IKFW60N65ES5XKSA1

 IMBG120R090M1HXTMA1
 IMBG120R220M1HXTMA1
 XD15H120CX1
 XD25H120CX0
 XP15PJS120CL1B1
 IGW30N60H3FKSA1

 STGWA15H120F2
 IKA10N60TXKSA1
 IKW25N120T2FKSA1
 IKP20N60TXKSA1
 IHW20N65R5XKSA1
 IDW40E65D2FKSA1

 APT70GR120JD60
 AOD5B60D