Ultrafast Rectifier, 15 A FRED Pt ${ }^{\circledR}$

FEATURES

TO-263AB (D²PAK)
Base cathode

Anode
VS-ETL1506SHM3

- State of the art low forward voltage drop
- Ultrafast recovery time
- $175^{\circ} \mathrm{C}$ operating junction temperature
- Low leakage current
- Designed and qualified according to JEDEC ${ }^{\circledR}$-JESD 47
- AEC-Q101 qualified
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION / APPLICATIONS

State of the art, ultralow V_{F}, soft-switching ultrafast rectifiers optimized for Discontinuous (Critical) Mode (DCM) Power Factor Correction (PFC).
The minimized conduction loss, optimized stored charge and low recovery current minimized the switching losses and reduce over dissipation in the switching element and snubbers.
The device is also intended for use as a freewheeling diode in power supplies and other power switching applications.

APPLICATIONS

AC/DC SMPS 70 W to 400 W
e.g. laptop and printer AC adaptors, desktop PC, TV and monitor, games units, and DVD AC/DC power supplies.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS
Repetitive peak reverse voltage	$\mathrm{V}_{\text {RRM }}$		600	V
Average rectified forward current	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$\mathrm{T}_{\mathrm{C}}=152^{\circ} \mathrm{C}$	15	A
Non-repetitive peak surge current	$\mathrm{I}_{\mathrm{FSM}}$	$\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	200	
Operating junction and storage temperatures	$\mathrm{T}_{\mathrm{J},}, \mathrm{T}_{\text {Stg }}$		-65 to +175	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS $\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	$\mathrm{V}_{\mathrm{BR}}, \mathrm{V}_{\mathrm{R}}$	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$	600	-	-	V
Forward voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$	-	0.99	1.07	
		$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=150^{\circ} \mathrm{C}$	-	0.85	0.91	
Reverse leakage current	$I_{\text {R }}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$ rated	-	0.01	15	$\mu \mathrm{A}$
		$\mathrm{T}_{\mathrm{J}}=150{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$ rated	-	6	100	
Junction capacitance	$\mathrm{C}_{\text {T }}$	$\mathrm{V}_{\mathrm{R}}=600 \mathrm{~V}$	-	12	-	pF
Series inductance	Ls	Measured lead to lead 5 mm from package body	-	8.0	-	nH

DYNAMIC RECOVERY CHARACTERISTICS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS
Reverse recovery time	t_{rr}	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$		-	60	110	ns
				-	185	270	
		$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} \\ & \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=200 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{R}}=390 \mathrm{~V} \end{aligned}$	-	210	-	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		-	290	-	
Peak recovery current	$I_{\text {RRM }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		-	20	-	A
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		-	26	-	
Reverse recovery charge	Q_{rr}	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$		-	2.2	-	$\mu \mathrm{C}$
		$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$		-	4.0	-	

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-65	-	175	${ }^{\circ} \mathrm{C}$
Thermal resistance, junction to case	$\mathrm{R}_{\text {thJC }}$		-	1.3	1.51	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal resistance, junction to ambient	$\mathrm{R}_{\text {thJA }}$	Typical socket mount	-	-	70	
Thermal resistance, case to heatsink	$\mathrm{R}_{\text {thCs }}$	Mounting surface, flat, smooth, and greased	-	0.5	-	
Weight			-	2.0	-	g
			-	0.07	-	oz.
Mounting torque			$\begin{gathered} \hline 6 \\ (5) \\ \hline \end{gathered}$	-	$\begin{gathered} 12 \\ (10) \\ \hline \end{gathered}$	$\mathrm{kgf} \cdot \mathrm{cm}$ (lbf • in)
Marking device		Case style D ${ }^{2}$ PAK modified	ETL1506SH			
		Case style TO-262	ETL1506-1H			

Fig. 1 - Typical Forward Voltage Drop Characteristics

Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

Fig. 4 - Max. Thermal Impedance $Z_{\text {thJC }}$ Characteristics

Fig. 5 - Maximum Allowable Case Temperature vs.
Average Forward Current

Fig. 6 - Forward Power Loss Characteristics

Fig. 7 - Typical Reverse Recovery Time vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Fig. 8 - Typical Stored Charge vs. $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$

Fig. 9 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Circuit configuration
$\mathrm{E}=$ single diode
$3 \quad-\quad \mathrm{T}=\mathrm{TO}-220$
4 - L = ultrafast recovery time
5 - Current code (15 = 15 A)
6 - Voltage code $(06=600 \mathrm{~V})$
$7 \quad-\quad \cdot \mathrm{S}=\mathrm{D}^{2}$ PAK

- -1 = TO-262
$8 \quad-\quad$ None $=$ tube (50 pieces $)$
- TRL = tape and reel (left oriented, for D^{2} PAK package)
- TRR = tape and reel (right oriented, for D^{2} PAK package)

9 - $\mathrm{H}=\mathrm{AEC}-\mathrm{Q} 101$ qualified
$10-\mathrm{M} 3=$ halogen-free, RoHS-compliant, and terminations lead (Pb)-free

ORDERING INFORMATION (Example)			
PREFERRED P/N	QUANTITY PER TUBE	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-ETL1506SHM3	50	1000	Antistatic plastic tube
VS-ETL1506-1HM3	50	1000	Antistatic plastic tube
VS-ETL1506STRRHM3	800	800	13 " diameter reel
VS-ETL1506STRLHM3	800	800	13 " diameter reel

LINKS TO RELATED DOCUMENTS		
Dimensions	TO-263AB (D2PAK)	$\underline{w w w . v i s h a y . c o m / d o c ? 95046 ~}$
	TO-262AA	$\underline{w w w . v i s h a y . c o m / d o c ? 95419 ~}$
Part marking information	TO-263AB (D2PAK)	$\underline{w w w . v i s h a y . c o m / d o c ? 95444 ~}$
	TO-262AA	$\underline{w w w . v i s h a y . c o m / d o c ? 95443 ~}$
Packaging information	TO-263AB (D2PAK)	$\underline{w w w . v i s h a y . c o m / d o c ? 95032 ~}$

D2PAK

DIMENSIONS in millimeters and inches

SYMBOL	MILLIMETERS		INCHES		NOTES	SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.			MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190		D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010		E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039		E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4	e		BS	0.10	BSC	
b2	1.14	1.78	0.045	0.070		H	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4	L	1.78	2.79	0.070	0.110	
c	0.38	0.74	0.015	0.029		L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4	L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065		L3	0.2	BC	0.01	BSC	
D	8.51	9.65	0.335	0.380	2	L4	4.78	5.28	0.188	0.208	

Notes

${ }^{(1)}$ Dimensioning and tolerancing per ASME Y14.5 M-1994
${ }^{(2)}$ Dimension D and E do not include mold flash. Mold flash shall not exceed $0.127 \mathrm{~mm}\left(0.005{ }^{\prime \prime}\right)$ per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Datum A and B to be determined at datum plane H
(6) Controlling dimension: inch
${ }^{(7)}$ Outline conforms to JEDEC ${ }^{\circledR}$ outline TO-263AB

DIMENSIONS in millimeters and inches
Modified JEDEC outline TO-262

SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX	MIN.	MAX.	
A	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
c	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
e	2.54 BSC		0.100 BSC		
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.56	3.71	0.140	0.146	

Notes

(1) Dimensioning and tolerancing as per ASME Y14.5M-1994
${ }^{(2)}$ Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm ($0.005{ }^{\prime \prime}$) per side. These dimensions are measured at the outmost extremes of the plastic body
(3) Thermal pad contour optional within dimension E, L1, D1 and E1
(4) Dimension b1 and c1 apply to base metal only
(5) Controlling dimension: inches
(6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) and D1 (minimum) where dimensions derived the actual package outline

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Rectifiers category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US VS-80-1293 DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 VS-80-6193 VS-66-9903 VGF0136AB US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1306 UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF MUR420GP-TP

