VS-HFA04TB60S-M3

Vishay Semiconductors

HEXFRED[®], Ultrafast Soft Recovery Diode, 4 A

www.vishay.com

PRIMARY CHARACTERISTICS						
I _{F(AV)}	4 A					
V _R	600 V					
V _F at I _F	1.4 V					
t _{rr} (typ.)	17 ns					
T _J max.	150 °C					
Package	D ² PAK (TO-263AB)					
Circuit configuration	Single					

FEATURES

- Ultrafast recovery
- Ultrasoft recovery
- Very low I_{RRM}
- Very low Q_{rr}
- Specified at operating temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of 245 °C
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Reduced RFI and EMI
- Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

VS-HFA04TB60S is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 4 A continuous current, the VS-HFA04TB60S is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (IRBM) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED VS-HFA04TB60S is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS		
Cathode to anode voltage	V _R		600	V		
Maximum continuous forward current	I _F	T _C = 100 °C	4			
Single pulse forward current	I _{FSM}		25	А		
Maximum repetitive forward current	I _{FRM}		16			
Maximum power dissipation	PD	T _C = 25 °C	25	W		
		T _C = 100 °C	10	vv		
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C		

Revision: 25-Oct-17

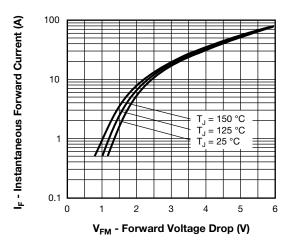
Document Number: 96215

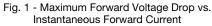
For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEuropa@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

HALOGEN

FREE


www.vishay.com


Vishay Semiconductors

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS	
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		600	-	-		
Maximum forward voltage		I _F = 4.0 A		-	1.5	1.8	V	
	V _{FM}	I _F = 8.0 A	See fig. 1	-	1.8	2.2	v	
		$I_F = 4.0 \text{ A}, T_J = 125 ^\circ\text{C}$		-	1.4	1.7		
Maximum reverse leakage current	1	$V_{R} = V_{R}$ rated	See fig. 2	-	0.17	3.0		
Maximum reverse leakage current	I _{RM}	$T_J = 125 \text{ °C}, V_R = 0.8 \text{ x } V_R \text{ rated}$	See lig. 2	-	44	300	μA	
Junction capacitance	CT	V _R = 200 V	See fig. 3	-	4.0	8.0	pF	
Series inductance	L _S	Measured lead to lead 5 mm from package body - 8		8.0	-	nH		

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)								
PARAMETER	SYMBOL	TEST CON	IDITIONS	MIN.	TYP.	MAX.	UNITS	
	t _{rr}	$I_F = 1.0 \text{ A}, \text{ d}I_F/\text{d}t = 200 \text{ A}$	õs, V _R = 30 V	-	17	-		
Reverse recovery time See fig. 5, 6	t _{rr1}	T _J = 25 °C		-	28	42	ns	
000 lig. 0, 0	t _{rr2}	T _J = 125 °C	I _F = 4.0 A di _F /dt = 200 A/μs V _B = 200 V	-	38	57		
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	2.9	5.2	A	
Peak recovery current	I _{RRM2}	T _J = 125 °C		-	3.7	6.7		
Reverse recovery charge	Q _{rr1}	T _J = 25 °C		-	40	60	nC	
See fig. 7	Q _{rr2}	T _J = 125 °C		-	70	105	ne	
Peak rate of fall of recovery current during t_b , see fig. 8	di _{(rec)M} /dt1	T _J = 25 °C		-	280	-	A/µs	
	di _{(rec)M} /dt2	T _J = 125 °C		-	235	-	γγµs	

THERMAL - MECHANICAL SPECIFICATIONS								
PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNITS								
Lead temperature	Tlead	0.063" from case (1.6 mm) for 10 s	-	-	300	°C		
Thermal resistance, junction-to-case	R _{thJC}		-	-	5.0	K/W		
Thermal resistance, junction-to-ambient	R _{thJA}	Typical socket mount	-	-	80	r./vv		
Wainht			-	2.0	-	g		
Weight			-	0.07	-	oz.		
Marking device		Case style D ² PAK (TO-263AB)	HFA04TB60S					

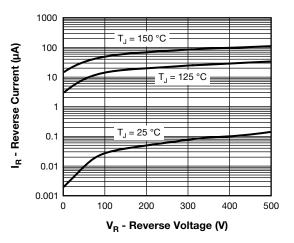


Fig. 2 - Typical Reverse Current vs. Reverse Voltage

Revision: 25-Oct-17

2

Document Number: 96215

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEuropa@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

Vishay Semiconductors

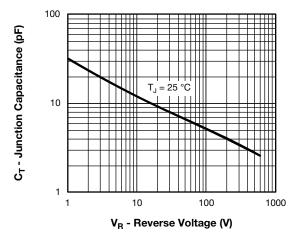


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

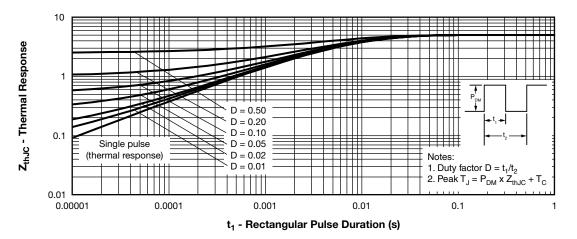


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

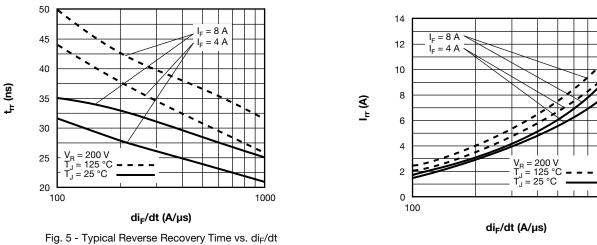
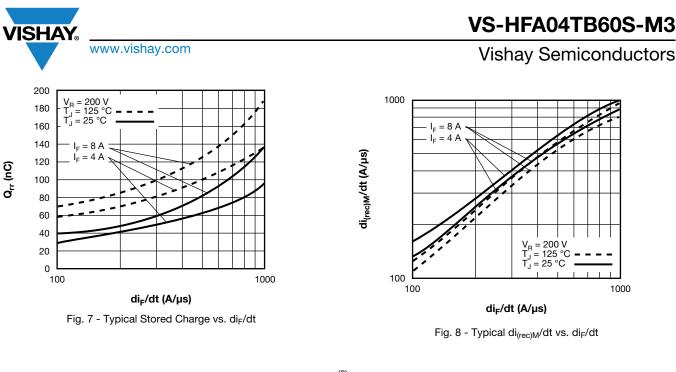


Fig. 6 - Typical Recovery Current vs. di_F/dt


Revision: 25-Oct-17

3

Document Number: 96215

1000

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEuropa@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

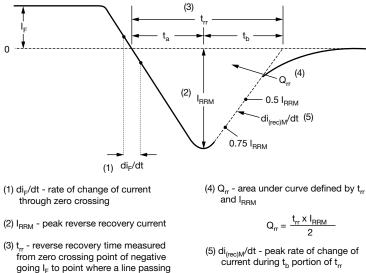
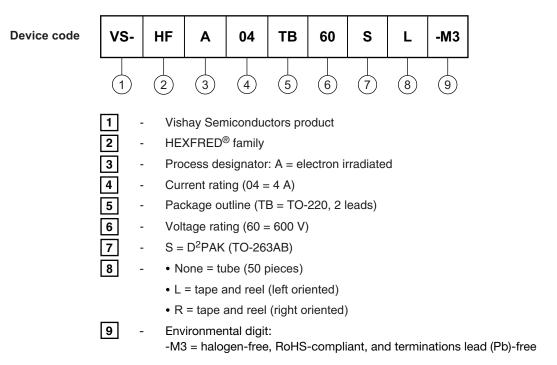


Fig. 9 - Reverse Recovery Waveform and Definitions

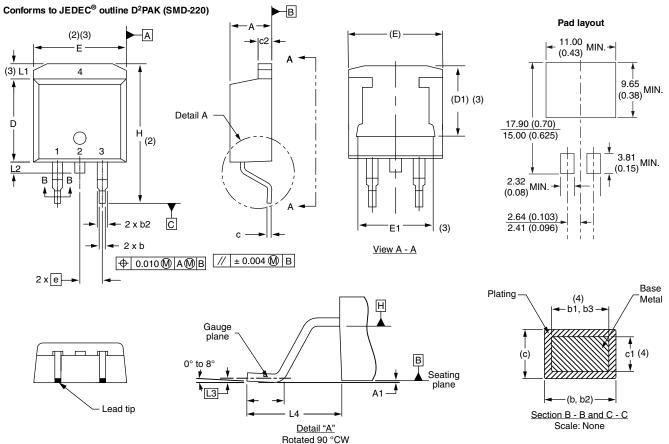

through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.

VS-HFA04TB60S-M3

Vishay Semiconductors

www.vishay.com

ORDERING INFORMATION TABLE


ORDERING INFORMATION (Example)									
PREFERRED P/N	QUANTITY PER TUBE OR TAPE AND REEL	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION						
VS-HFA04TB60S-M3	50	1000	Antistatic plastic tube						
VS-HFA04TB60SL-M3	800	800	13" diameter reel						
VS-HFA04TB60SR-M3	800	800	13" diameter reel						

LINKS TO RELATED DOCUMENTS						
Dimensions	www.vishay.com/doc?96164					
Part marking information	www.vishay.com/doc?95444					
Packaging information	www.vishay.com/doc?96424					

Vishay Semiconductors

D²PAK

DIMENSIONS in millimeters and inches

ota	ted	90	°C
<u>S</u>	cale	<u>ə:</u> 8	:1

SYMBOL	MILLIM	MILLIMETERS		INCHES		
STMBOL	MIN.	MAX.	MIN.	MAX.	NOTES	
Α	4.06	4.83	0.160	0.190		
A1	0.00	0.254	0.000	0.010		
b	0.51	0.99	0.020	0.039		
b1	0.51	0.89	0.020	0.035	4	
b2	1.14	1.78	0.045	0.070		
b3	1.14	1.73	0.045	0.068	4	
с	0.38	0.74	0.015	0.029		
c1	0.38	0.58	0.015	0.023	4	
c2	1.14	1.65	0.045	0.065		
D	8.51	9.65	0.335	0.380	2	

SYMBOL	MILLIM	ETERS	INCHES		NOTES
STNDUL	MIN.	MAX.	MIN.	MAX.	NOTES
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
е	2.54 BSC		0.100	BSC	
Н	14.61	15.88	0.575	0.625	
L	1.78	2.79	0.070	0.110	
L1	-	1.65	-	0.066	3
L2	1.27	1.78	0.050	0.070	
L3	0.25 BSC		0.010	BSC	
L4	4.78	5.28	0.188	0.208	

Notes

⁽¹⁾ Dimensioning and tolerancing per ASME Y14.5 M-1994

(2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body

(3) Thermal pad contour optional within dimension E, L1, D1 and E1

⁽⁴⁾ Dimension b1 and c1 apply to base metal only

(5) Datum A and B to be determined at datum plane H

(6) Controlling dimension: inches

⁽⁷⁾ Outline conforms to JEDEC[®] outline TO-263AB

Revision: 13-Jul-17

1

Document Number: 96164

For technical questions within your region: DiodesAmericas@vishav.com, DiodesAsia@vishav.com, DiodesEurope@vishav.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

 70HFR40
 RL252-TP
 150KR30A
 1N5397
 NTE5841
 NTE6038
 SCF5000
 1N4002G
 1N4005-TR
 JANS1N6640US
 VS-80-7161
 481235F

 RRE02VS6SGTR
 067907F
 MS306
 70HF40
 T85HFL60S02
 US2JFL-TP
 A1N5404G-G
 CRS04(T5L,TEMQ)
 ACGRA4007-HF

 ACGRB207-HF
 CLH03(TE16L,Q)
 ACGRC307-HF
 ACEFC304-HF
 NTE6356
 NTE6002
 NTE6002
 NTE6039
 NTE6077

 85HFR60
 40HFR60
 1N1186RA
 70HF120
 85HFR80
 D126A45C
 SCF7500
 D251N08B
 SCHJ22.5K
 SM100
 SCPA2
 SCH10000
 SDHD5K

 VS-12FL100S10
 ACGRA4001-HF
 D1821SH45T PR
 D1251S45T
 NTE5990
 NTE6358