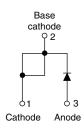
VS-HFA08TB60HN3

Vishay Semiconductors

RoHS

COMPLIANT


HALOGEN

FREE

HEXFRED[®] Ultrafast Soft Recovery Diode, 8 A

www.vishay.com

PRODUCT SUMMARY							
Package	TO-220AC						
I _{F(AV)}	8 A						
V _R	600 V						
V _F at I _F	1.4 V						
t _{rr} typ.	18 ns						
T _J max.	150 °C						
Diode variation	Single die						

FEATURES

- Ultrafast and ultrasoft recovery
- Very low I_{RRM} and Q_{rr}
- AEC-Q101 qualified meets JESD 201 class 2
 whisker test
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

BENEFITS

- Reduced RFI and EMI
- · Reduced power loss in diode and switching transistor
- Higher frequency operation
- Reduced snubbing
- Reduced parts count

DESCRIPTION

VS-HFA08TB60... is a state of the art ultrafast recovery diode. Employing the latest in epitaxial construction and advanced processing techniques it features a superb combination of characteristics which result in performance which is unsurpassed by any rectifier previously available. With basic ratings of 600 V and 8 A continuous current, the VS-HFA08TB60... is especially well suited for use as the companion diode for IGBTs and MOSFETs. In addition to ultrafast recovery time, the HEXFRED® product line features extremely low values of peak recovery current (IRBM) and does not exhibit any tendency to "snap-off" during the t_b portion of recovery. The HEXFRED features combine to offer designers a rectifier with lower noise and significantly lower switching losses in both the diode and the switching transistor. These HEXFRED advantages can help to significantly reduce snubbing, component count and heatsink sizes. The HEXFRED VS-HFA08TB60 ... is ideally suited for applications in power supplies and power conversion systems (such as inverters), motor drives, and many other similar applications where high speed, high efficiency is needed.

ABSOLUTE MAXIMUM RATINGS										
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS						
Cathode to anode voltage	V _R		600	V						
Maximum continuous forward current	I _F	T _C = 100 °C	8							
Single pulse forward current	I _{FSM}		60	А						
Maximum repetitive forward current	I _{FRM}		24							
Maximum navyar discinction	Р	T _C = 25 °C	36	W						
Maximum power dissipation	PD	T _C = 100 °C	14	vv						
Operating junction and storage temperature range	T _J , T _{Stg}		-55 to +150	°C						

Revision: 15-Jul-15

1

Document Number: 94970

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u> www.vishay.com

VISHAY

VS-HFA08TB60HN3

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS (T _J = 25 $^{\circ}$ C unless otherwise specified)										
PARAMETER	SYMBOL	TEST CONDITIONS		MIN.	TYP.	MAX.	UNITS			
Cathode to anode breakdown voltage	V _{BR}	I _R = 100 μA		600	-	-				
Maximum forward voltage		I _F = 8.0 A		-	1.4	1.7	V			
	V_{FM}	I _F = 16 A	See fig. 1	-	1.7	2.1				
		$I_F = 8.0 \text{ A}, T_J = 125 \text{ °C}$		-	1.4	1.7				
Maximum reverse		$V_{\rm R} = V_{\rm R}$ rated	See fig. 0	-	0.3	5.0				
leakage current	IRM	$T_J = 125 \text{ °C}, V_R = 0.8 \text{ x } V_R \text{ rated}$ See fig.		-	100	500	μA			
Junction capacitance	CT	V _R = 200 V	See fig. 3	-	10	25	pF			
Series inductance	L _S	Measured lead to lead 5 mm from p	ackage body	-	8.0	-	nH			

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25$ °C unless otherwise specified)										
PARAMETER	SYMBOL	TEST CO	NDITIONS	MIN.	TYP.	MAX.	UNITS			
Reverse recovery time	t _{rr}	$I_F = 1.0 \text{ A}, dI_F/dt = 200$	A/μs, V _R = 30 V	-	18	-				
	t _{rr1}	T _J = 25 °C		-	37	-	ns			
	t _{rr2}	T _J = 125 °C		-	55	-				
Peak recovery current	I _{RRM1}	T _J = 25 °C		-	3.5	-	A nC			
Feak recovery current	I _{RRM2}	T _J = 125 °C	I _F = 8.0 A dI _F /dt = 200 A/µs	-	4.5	-				
Poverse recovery charge	Q _{rr1}	T _J = 25 °C	$V_{\rm R} = 200 \text{ V}$	-	65	-				
Reverse recovery charge	Q _{rr2}	T _J = 125 °C		-	124	-				
Peak rate of fall of	dl _{(rec)M} /dt1	T _J = 25 °C		-	240	-				
recovery current during t _b	dI _{(rec)M} /dt2	T _J = 125 °C		-	210	-	A/µs			

THERMAL - MECHANICAL SPECIFICATIONS										
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS				
Lead temperature	T _{lead}	0.063" from case (1.6 mm) for 10 s	-	-	300	°C				
Thermal resistance, junction to case	R _{thJC}		-	-	3.5					
Thermal resistance, junction to ambient	R _{thJA}	Typical socket mount	-	-	80	K/W				
Thermal resistance, case to heatsink	R _{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-					
Weight			-	2.0	-	g				
weight			-	0.07	-	oz.				
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)				
Marking device		Case style TO-220AC		HFA08	TB60H					

Revision: 15-Jul-15

Document Number: 94970

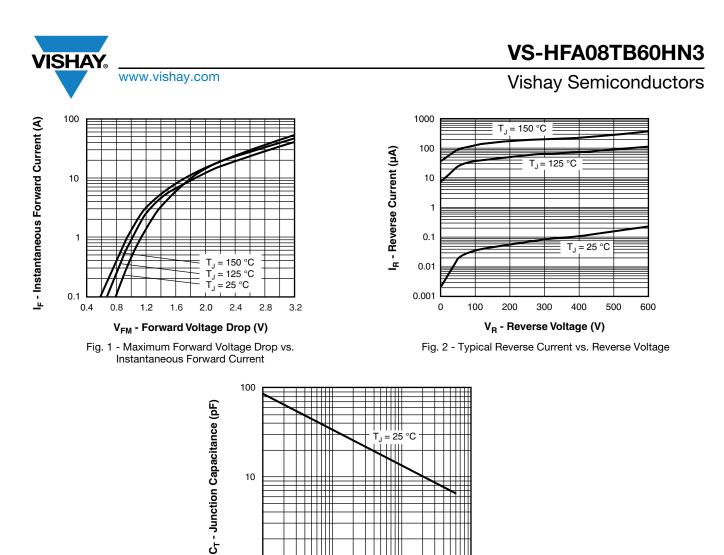


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

V_B - Reverse Voltage (V)

100

1000

10

10

1 1

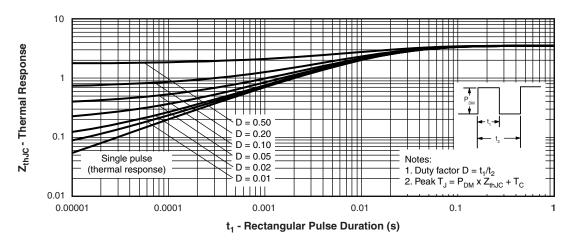


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

Revision: 15-Jul-15

3

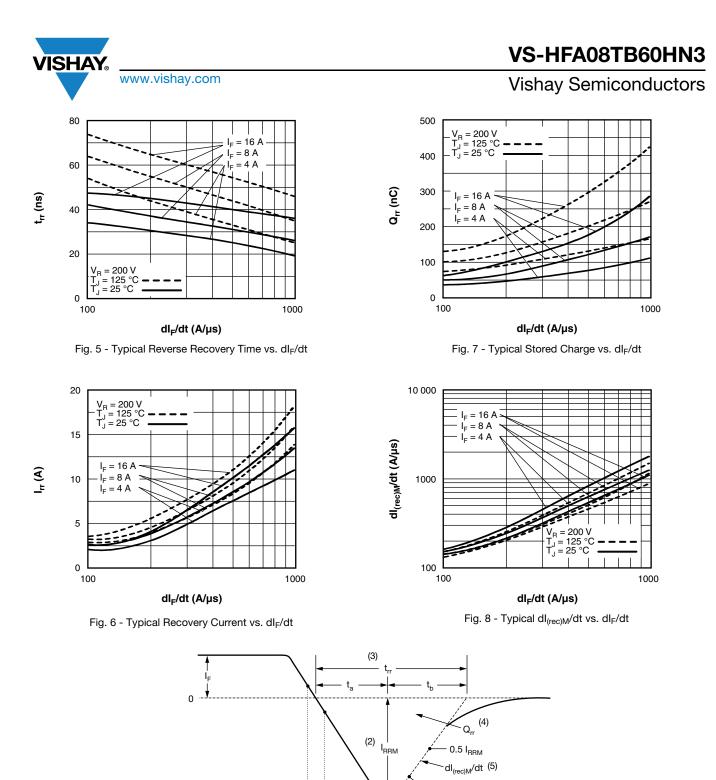


Fig. 9 - Reverse Recovery Waveform and Definitions

(1) dl_F/dt

(1) dl_F/dt - rate of change of current

(2) I_{RRM} - peak reverse recovery current (3) t_{rr} - reverse recovery time measured

from zero crossing point of negative

going I_F to point where a line passing through 0.75 I_{RRM} and 0.50 I_{RRM} extrapolated to zero current.

through zero crossing

0.75 I_{RRM}

and I_{RRM}

(4) Q_{rr} - area under curve defined by t_{rr}

(5) dl_{(rec)M}/dt - peak rate of change of

current during t_b portion of t_{rr}

 $Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$

Revision: 15-Jul-15	4	Document Number: 94970
For technical questions within your region	DiodesAmericas@vishay.com, DiodesAsia@vishay.co	m, <u>DiodesEurope@vishay.com</u>
	E WITHOUT NOTICE. THE PRODUCTS DESCRIBED I CIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com</u>	

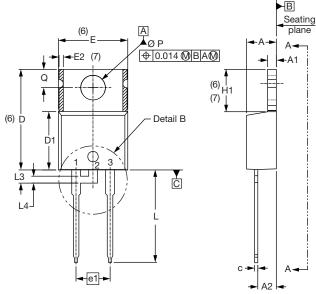
Vishay Semiconductors

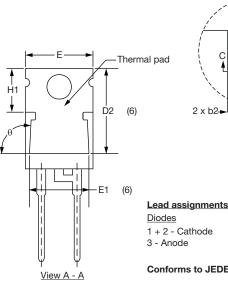
ORDERING INFORMATION TABLE

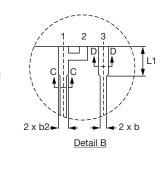
Device code	VS-	HF	Α	08	тв	60	н	N3
		(2)	(3)	(4)	(5)	(6)	(7)	(8)
	1 - 2 - 3 - 4 - 5 - 6 - 7 -	HEX Elec Cur Pac TB Volt	XFRED [®] ctron irra rent rati kage: = TO-22 tage rati	adiated ng (08 =	= 8 A) = 600 V)			
	8 -	Env	vironmer	ntal digit en-free,	:	complia	nt, and t	totally le

ORDERING INFORMATION (Example)								
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION					
VS-HFA08TB60HN3	50	1000	Antistatic plastic tube					

LINKS TO RELATED DOCUMENTS							
Dimensions		www.vishay.com/doc?95221					
Part marking information	TO-220AC-N3	www.vishay.com/doc?95068					




Vishay Semiconductors


TO-220AC

plane

DIMENSIONS in millimeters and inches

Diodes 1 + 2 - Cathode 3 - Anode

Conforms to JEDEC outline TO-220AC

SYMBOL	MILLIN	IETERS	INC	HES	NOTES	SYMBOL	MILLIN	IETERS	INC	HES	NOTES
STIVIDOL	MIN.	MAX.	MIN.	MAX.	NOTES	STIVIDOL	MIN.	MAX.	MIN.	MAX.	NOTES
А	4.25	4.65	0.167	0.183		E1	6.86	8.89	0.270	0.350	6
A1	1.14	1.40	0.045	0.055		E2	-	0.76	-	0.030	7
A2	2.56	2.92	0.101	0.115		е	2.41	2.67	0.095	0.105	
b	0.69	1.01	0.027	0.040		e1	4.88	5.28	0.192	0.208	
b1	0.38	0.97	0.015	0.038	4	H1	6.09	6.48	0.240	0.255	6, 7
b2	1.20	1.73	0.047	0.068		L	13.52	14.02	0.532	0.552	
b3	1.14	1.73	0.045	0.068	4	L1	3.32	3.82	0.131	0.150	2
с	0.36	0.61	0.014	0.024		L3	1.78	2.13	0.070	0.084	
c1	0.36	0.56	0.014	0.022	4	L4	0.76	1.27	0.030	0.050	2
D	14.85	15.25	0.585	0.600	3	ØР	3.54	3.73	0.139	0.147	
D1	8.38	9.02	0.330	0.355		Q	2.60	3.00	0.102	0.118	
D2	11.68	12.88	0.460	0.507	6	θ	90° t	o 93°	90° t	o 93°	
E	10.11	10.51	0.398	0.414	3, 6						

Notes

⁽¹⁾ Dimensioning and tolerancing as per ASME Y14.5M-1994

- ⁽²⁾ Lead dimension and finish uncontrolled in L1
- (3) Dimension D, D1 and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outermost extremes of the plastic body
- ⁽⁴⁾ Dimension b1, b3 and c1 apply to base metal only
- ⁽⁵⁾ Controlling dimension: inches
- ⁽⁶⁾ Thermal pad contour optional within dimensions E, H1, D2 and E1
- ⁽⁷⁾ Dimension E2 x H1 define a zone where stamping and singulation irregularities are allowed
- ⁽⁸⁾ Outline conforms to JEDEC TO-220, D2 (minimum) where dimensions are derived from the actual package outline

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

D91A DA24F4100L DD89N1600K-A DD89N16K-K RL252-TP DLA11C-TR-E DSA17G DSEI2X30-06C 1N4005-TR BAV199-TP UFS120Je3/TR13 JANS1N6640US DD89N16K DD89N16K-A 481235F DSP10G-TR-E 067907F MS306 ND104N08K SPA2003-B-D-A01 US2JFL-TP UFS105Je3/TR13 A1N5404G-G ACGRA4007-HF ACGRB207-HF RF301B2STL RF501B2STL UES1302 BAV199E6433HTMA1 ACGRC307-HF ACEFC304-HF JANTXV1N5660A UES1106 GS2K-LTP D126A45C D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K STTH20P035FP VS-8EWS12S-M3 VS-12FL100S10 ACGRA4001-HF MUR420GP-TP 1N5404GP-E3/54 ND89N08K D1821SH45T PR D1251S45T