RoHS

COMPLIANT

HALOGEN FREE

GREEN

www.vishay.com

Vishay Semiconductors

High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

DESCRIPTION

As part of the <u>SurfLight</u> portfolio, the VSMY1850 is an infrared, 850 nm emitting diode based on GaAlAs surface emitter chip technology with high radiant intensity, high optical power and high speed, molded in clear, untinted 0805 plastic package for surface mounting (SMD).

FEATURES

- Package type: surface mount
- Package form: 0805
- Dimensions (L x W x H in mm): 2 x 1.25 x 0.85
- Peak wavelength: λ_p = 850 nm
- High reliability
- · High radiant power
- High radiant intensity
- High speed
- Angle of half sensitivity: $\varphi = \pm 60^{\circ}$
- · Suitable for high pulse current operation
- 0805 standard surface-mountable package
- Floor life: 168 h, MSL 3, according to J-STD-020
- · Lead (Pb)-free reflow soldering
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

APPLICATIONS

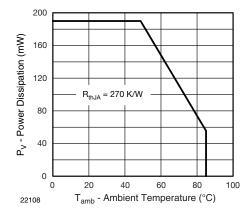
- IrDA compatible data transmission
- · Miniature light barrier
- Photointerrupters
- · Optical switch
- Emitter source for proximity sensors
- IR touch panels
- IR Flash
- IR illumination
- 3D TV

PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)	
VSMY1850	10	± 60	850	10	

Note

• Test conditions see table "Basic Characteristics"

ORDERING INFORMATION				
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM	
VSMY1850	Tape and reel	MOQ: 3000 pcs, 3000 pcs/reel	0805	


Note

MOQ: minimum order quantity

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		I _F	100	mA	
Peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	1	Α	
Power dissipation		P _V	190	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	-40 to +85	°C	
Storage temperature range		T _{stg}	-40 to +100	°C	
Soldering temperature	According to Fig. 7, J-STD-020	T _{sd}	260	°C	
Thermal resistance junction / ambient	JESD 51	R _{thJA}	270	K/W	

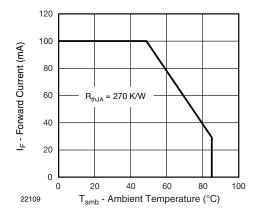


Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward valtage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F	-	1.65	1.9	V
Forward voltage	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	V _F	-	2.9	-	V
Tamananatura anaffiniant of V	I _F = 1 mA	TK _{VF}	-	-1.4	-	mV/K
Temperature coefficient of V _F	I _F = 10 mA	TK _{VF}	-	-1.18	=	mV/K
Reverse current		I _R	Not designed for reverse operation		μA	
Junction capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz,}$ $E = 0 \text{ mW/cm}^2$	CJ	-	125	-	pF
Redient intensity	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	5	10	15	mW/sr
Radiant intensity	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	l _e	-	85	-	mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фе	-	50	-	mW
Temperature coefficient of radiant power	I _F = 100 mA	TKφ _e	-	-0.35	-	%/K
Angle of half intensity		φ	-	± 60	=	deg
Peak wavelength	I _F = 100 mA	λρ	840	850	870	nm
Spectral bandwidth	I _F = 30 mA	Δλ	-	30	=	nm
Temperature coefficient of λ _p	I _F = 30 mA	TK _{λp}	-	0.25	=	nm/K
Rise time	I _F = 100 mA, 20 % to 80 %	t _r	-	10	-	ns
Fall time	I _F = 100 mA, 20 % to 80 %	t _f	-	10	-	ns
Virtual source diameter		d	-	0.5	-	mm

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

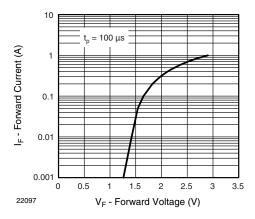


Fig. 3 - Forward Current vs. Forward Voltage

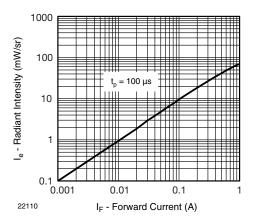


Fig. 4 - Radiant Intensity vs. Forward Current

REFLOW SOLDER PROFILE

19841

300 250 245 °C 240 °C 217 °C Temperature (°C) 200 max. 30 s 150 max. 120 s max. 100 s 100 max. ramp down 6 °C/s 50 nax. ramp up 3 °C/s 50 100 300 150 200

Fig. 7 - Lead (Pb)-free Reflow Solder Profile According to J-STD-020

Time (s)

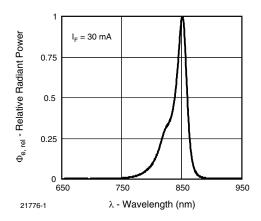


Fig. 5 - Relative Radiant Power vs. Wavelength

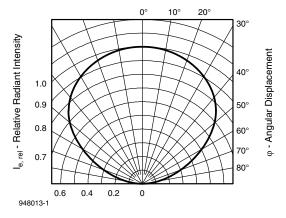


Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

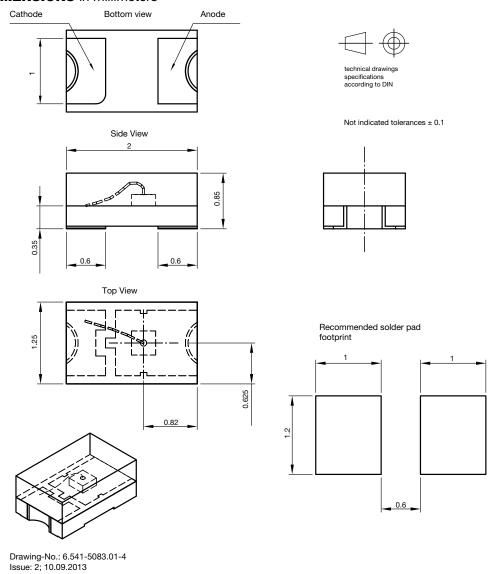
FLOOR LIFE

Time between soldering and removing from MBB must not exceed the time indicated in J-STD-020:

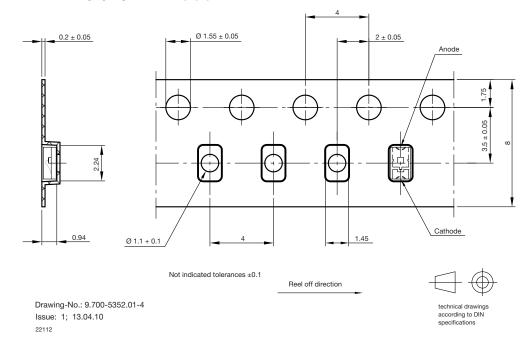
Moisture sensitivity: level 3

Floor life: 168 h

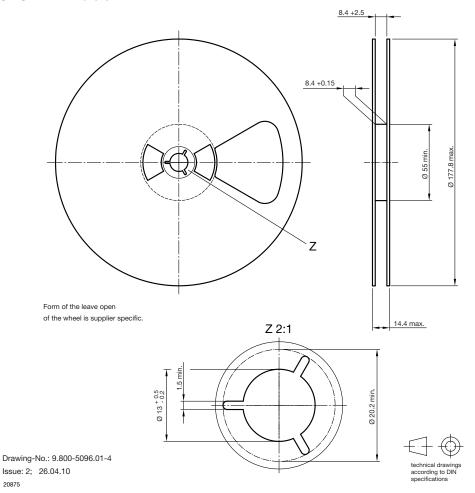
Conditions: T_{amb} < 30 °C, RH < 60 %


DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M.


Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters



BLISTER TAPE DIMENSIONS in millimeters

REEL DIMENSIONS in millimeters

20875

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 13-Jun-16 1 Document Number: 91000

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Infrared Emitters - High Power category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

QED123UL TSHA6201 TSHA6202 SFH 4030 SFH 4060 SFH 4775S A01 SFH 4726AS SFH 4725AS VSMY2853SLX01

VSMY2853RGX01 VSMY2853GX01 VSMY2850GX01 IN-P281ASGHR IN-P281ASGIR VSMY2890GX01 VSMY2890RGX01 SFH

4728AS A01 SST-10-IRD-B130H-S940 SST-10-IRD-B50H-S940 QEE123 TSHA6200 TSML1030 VTE1291W-2H LL-304IRC4B-2AD

LL-503HIRT2E-1CC LL-503IRC2E-2AC LL-503IRC2V-2AD LL-503IRT2E-2AC LL-503IRT2E-2AE LL-503SIRC2E-1BD LL-S170IRC
2A SFH 4259 OS5RKAZ5D1P OSB56LZE31D OSG58AZ5D1P OSI3CA5111A OSI3NAS1C1A OSI5LA56A1A OSI5XNE3E1E

OSIXCA5121A OSIXCAS1C1A OSM54LZ5D1P OSM5D3Z2C1P OSMR43Z2C1P OSO5PAZ161D OSOR7161D OSPW7161D

OSPW71B1P OSR5PAZE31D OSR9XAE3E1E