Power Modules, Passivated Assembled Circuit Elements, 40 A

PACE-PAK (D-19)

PRIMARY CHARACTERISTICS	
I_{O}	40 A
Type	Modules - thyristor, standard
Package	PACE-PAK (D-19)

FEATURES

- Glass passivated junctions for greater reliability
- Electrically isolated base plate
- Available up to $1200 \mathrm{~V}_{\text {RRM }} / V_{\text {DRM }}$
- High dynamic characteristics
- Wide choice of circuit configurations
- Simplified mechanical design and assembly
- UL E78996 approved
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

DESCRIPTION

The VS-P400 series of integrated power circuits consists of power thyristors and power diodes configured in a single package. With its isolating base plate, mechanical designs are greatly simplified giving advantages of cost reduction and reduced size.
Applications include power supplies, control circuits and battery chargers.

MAJOR RATINGS AND CHARACTERISTICS			
SYMBOL	CHARACTERISTICS	VALUES	UNITS
I_{0}	$80^{\circ} \mathrm{C}$	40	A
$\begin{aligned} & \mathrm{I}_{\text {TSM }}, \\ & \mathrm{I}_{\text {FSM }} \end{aligned}$	50 Hz	385	A
	60 Hz	400	
12 t	50 Hz	745	$A^{2} \mathrm{~s}$
	60 Hz	680	
$\mathrm{I}^{2} \sqrt{ } \mathrm{t}$		7450	$A^{2} \sqrt{ } \mathrm{~s}$
$\mathrm{V}_{\text {RRM }}$	Range	400 to 1200	V
$\mathrm{V}_{\text {ISOL }}$		2500	V
T_{J}		-40 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stg }}$			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS			
TYPE NUMBER	$\mathbf{V}_{\text {RRM }} / \mathbf{V}_{\text {DRM }}$, MAXIMUM REPETITIVE PEAK REVERSE AND PEAK OFF-STATE VOLTAGE V	$\mathbf{V}_{\text {RSM }}$, MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE v	$I_{\text {RRM }}$ MAXIMUM AT T_{J} MAXIMUM mA
VS-P401, VS-P421, VS-P431	400	500	10
VS-P402, VS-P422, VS-P432	600	700	
VS-P403, VS-P423, VS-P433	800	900	
VS-P404, VS-P424, VS-P434	1000	1100	
VS-P405, VS-P425, VS-P435	1200	1300	

VS-P400 Series
Vishay Semiconductors

ON-STATE CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum DC output current at case temperature	Io	Full bridge circuits			40	A
					80	${ }^{\circ} \mathrm{C}$
Maximum peak, one-cycle non-repetitive on-state or forward current	$I_{\text {TSM }}$, IFSM	$\mathrm{t}=10 \mathrm{~ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_{J}=T_{J}$ maximum	385	A
		$\mathrm{t}=8.3 \mathrm{~ms}$			400	
		$\mathrm{t}=10 \mathrm{~ms}$	$100 \% V_{\text {RRM }}$ reapplied		325	
		$\mathrm{t}=8.3 \mathrm{~ms}$			340	
Maximum $\mathrm{l}^{2} \mathrm{t}$ for fusing	12 t	$\mathrm{t}=10 \mathrm{~ms}$	No voltage reapplied		745	$A^{2} \mathrm{~s}$
		$\mathrm{t}=8.3 \mathrm{~ms}$			680	
		$\mathrm{t}=10 \mathrm{~ms}$	$100 \% V_{\text {RRM }}$ reapplied		530	
		$\mathrm{t}=8.3 \mathrm{~ms}$			480	
Maximum $\mathrm{I}^{2} \mathrm{~V}$ t for fusing	$12 \sqrt{t}$	$\mathrm{t}=0.1 \mathrm{~ms}$ to 10 ms , no voltage reapplied $\mathrm{I}^{2} \mathrm{t}$ for time $\mathrm{tx}=\mathrm{I}^{2} \sqrt{\mathrm{~V}} \cdot \sqrt{ } \mathrm{tx}$			7450	$A^{2} \sqrt{ }{ }^{\text {s }}$
Low level value of threshold voltage	$\mathrm{V}_{\text {T(TO) } 1}$	(16.7 \% $\times \pi \times \mathrm{I}_{\text {T(AV }}<\mathrm{I}<\pi \times \mathrm{I}_{\text {T(AV) }}$), $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			0.83	V
High level value of threshold voltage	$\mathrm{V}_{\text {(TO) } 2}$	$\left(1>\pi \times \mathrm{I}_{\mathrm{T}}(\mathrm{AV}), \mathrm{T}_{J}=\mathrm{T}_{J}\right.$ maximum			1.03	
Low level value of on-state slope resistance	$\mathrm{r}_{\text {t1 }}$	($16.7 \% \times \pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}<\mathrm{I}<\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}$), $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			9.61	$\mathrm{m} \Omega$
High level value of on-state slope resistance	$\mathrm{r}_{\mathrm{t} 2}$	$\left(\mathrm{I}>\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}\right), \mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			7.01	
Maximum on-state voltage drop	$\mathrm{V}_{\text {TM }}$	$\mathrm{I}_{T M}=\pi \times \mathrm{I}_{\text {T(AV) }}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.4	V
Maximum forward voltage drop	V_{FM}	$\mathrm{I}_{\mathrm{FM}}=\pi \times \mathrm{I}_{\text {F(AV) }}$		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	1.4	V
Maximum non-repetitive rate of rise of turned-on current	dl/dt	$\begin{aligned} & \mathrm{T}_{J}=125^{\circ} \mathrm{C} \text { from } 0.67 \mathrm{~V}_{\text {DRM }} \\ & \mathrm{I}_{\mathrm{TM}}=\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV},}, \mathrm{I}_{\mathrm{g}}=500 \mathrm{~mA}, \mathrm{t}_{\mathrm{r}}<0.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{p}}>6 \mu \mathrm{~s} \end{aligned}$			200	A/ $/ \mathrm{s}$
Maximum holding current	I_{H}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ anode supply $=6 \mathrm{~V}$, resistive load			130	mA
Maximum latching current	L				250	

BLOCKING

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, exponential to $0.67 \mathrm{~V}_{\text {DRM }}$ gate open	200	V/us
Maximum peak reverse and off-state leakage current at $\mathrm{V}_{\text {RRM }}, \mathrm{V}_{\text {DRM }}$	$I_{\text {RRM }}$, IDRM	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, gate open circuit	10	mA
Maximum peak reverse leakage current	$\mathrm{I}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	100	$\mu \mathrm{A}$
RMS isolation voltage	VISOL	50 Hz , circuit to base, all terminals shorted, $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{t}=1 \mathrm{~s}$	2500	V

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum peak gate power	P_{GM}			8	W
Maximum average gate power	$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$			2	
Maximum peak gate current	I_{GM}			2	A
Maximum peak negative gate voltage	$-V_{G M}$			10	V
Maximum gate voltage required to trigger	V_{GT}	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	Anode supply = 6 V resistive load	3	V
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		2	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		1	
Maximum gate current required to trigger	$I_{\text {GT }}$	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$		90	mA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		60	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		35	
Maximum gate voltage that will not trigger	V_{GD}	$\mathrm{T}_{J}=125^{\circ} \mathrm{C}$, rated $\mathrm{V}_{\text {DRM }}$ applied		0.2	V
Maximum gate current that will not trigger	I_{GD}			2	mA

Vishay Semiconductors

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction operating and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {Stg }}$		-40 to +125	${ }^{\circ} \mathrm{C}$	
Maximum thermal resistance, junction to case per junction	$\mathrm{R}_{\text {thsc }}$	DC operation	1.05	$\mathrm{~K} / \mathrm{W}$	
Maximum thermal resistance, case to heatsink	$\mathrm{R}_{\text {thcs }}$	Mounting surface, smooth and greased	0.10		
Mounting torque, base to heatsink ${ }^{(1)}$			4	Nm	
Approximate weight			58	g	
Case style			2.0	oz.	

Note
(1) A mounting compound is recommended and the torque should be checked after a period of 3 hours to allow for the spread of the compound

Fig. 1 - Current Ratings Nomogram (1 Module Per Heatsink)

Fig. 2 - On-State Power Loss Characteristics

Fig. 4 - Current Ratings Characteristics

93755_05

Fig. 5 - On-State Voltage Drop Characteristics

Fig. 6 - Maximum Non-Repetitive Surge Current

Fig. 7 - Maximum Non-Repetitive Surge Current

Fig. 8 - Thermal Impedance $Z_{\text {thJc }}$ Characteristics

Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Module type
3 - Current rating
$1=25$ A DC (P100 series)
4 = 40 A DC (P400 series)
4 - Circuit configuration
$0=$ single phase, hybrid bridge common cathode
2 = single phase, hybrid bridge doubler connection
3 = single phase, all SCR bridge
5 - Voltage code
$1=400 \mathrm{~V}$
$2=600 \mathrm{~V}$
$3=800 \mathrm{~V}$
$4=1000 V$
$5=1200 \mathrm{~V}$
6 - K = optional voltage suppression
7 - \quad W o optional freewheeling diode

CIRCUIT CONFIGURATION			
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	SCHEMATIC DIAGRAM	TERMINAL POSITIONS
Single phase, hybrid bridge common cathode	0		
Single phase, hybrid bridge doubler connection	2		
Single phase, all SCR bridge	3		

CODING (1)					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	BASIC SERIES	WITH VOLTAGE SUPPRESSION	WITH FREEWHEELING DIODE	WITH BOTH VOLTAGE SUPPRESSION AND FREEWHEEEING DIODE
Single phase, hybrid bridge common cathode	0	P 40.	P40.K	$\mathrm{P} 40 . \mathrm{W}$	P40.KW
Single phase, hybrid bridge doubler connection	2	P 42.	$\mathrm{P} 42 . \mathrm{K}$	-	-
Single phase, all SCR bridge	3	P 43.	$\mathrm{P} 43 . \mathrm{K}$	-	-

Note

(1) To complete code refer to Voltage Ratings table, i.e.: for 600 V P40.W complete code is P402W

LINKS TO RELATED DOCUMENTS	
Dimensions	$\underline{w w w . v i s h a y . c o m / d o c ? 95335 ~}$

D-19 PACE-PAK

DIMENSIONS in millimeters (inches)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SCR Modules category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD140N18KOF TD162N16KOF-A TD330N16AOF
T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T590N16TOF TD180N16KOF VSKE236/16PBF T1081N60TOH
TT61N08KOF TD251N18KOF TD430N22KOF TT162N08KOF T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF
TD160N16SOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF
TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF T360N26TOF NTE5728
ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2
MCD501-18IO2 SK 100 KQ 12

