AUTOMOTIVE

HALOGEN

Vishay General Semiconductor

Surface-Mount TMBS[®] (Trench MOS Barrier Schottky) Rectifier

Available	

PRIMARY CHARACTERISTICS				
I _{F(AV)}	5 A			
V _{RRM}	120 V			
I _{FSM}	100 A			
V _F at I _F = 5 A (T _A = 125 °C)	0.64 V			
T _J max.	175 °C			
Package	SlimSMAW (DO-221AD)			
Circuit configuration	Single			

FEATURES

- Low-profile package
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified available RoHS
 - Automotive ordering code: base P/NHM3
- Compatible to SOD-128 package case outline
 FREE
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

For use in high frequency inverters, freewheeling, DC/DC converters, and polarity protection in commercial, industrial, and automotive applications.

MECHANICAL DATA

Case: SlimSMAW (DO-221AD) Molding compound meets UL 94 V-0 flammability rating Base P/N-M3 - halogen-free, RoHS-compliant Base P/NHM3 - halogen-free, RoHS-compliant, and AEC-Q101 qualified

Terminals: matte tin plated leads, solderable per J-STD-002 and JESD 22-B102

M3 and HM3 suffix meet JESD 201 class 2 whisker test **Polarity:** color band denotes cathode end

MAXIMUM RATINGS ($T_A = 25 \text{ °C}$ unless otherwise noted)					
PARAMETER	SYMBOL	VSS8D5M12	UNIT		
Device marking code		5M12			
Maximum repetitive peak reverse voltage	V _{RRM}	100	V		
Maximum average forward rectified current (fig.1)	I _{F(AV)} ⁽¹⁾	5	А		
	I _{F(AV)} ⁽²⁾	2.2	A		
Peak forward surge current 10 ms single half sine-wave superimposed on rated load	I _{FSM}	100	А		
Operating junction temperature range	T _J ⁽³⁾ -40 to +175		<u></u>		
Storage temperature range	T _{STG}	-55 to +175	C		

Notes

⁽¹⁾ Mounted on 30 mm x 30 mm aluminum PCB pad areas

⁽²⁾ Free air, mounted on recommended copper pad area

 $^{(3)}$ The heat generated must be less than the thermal conductivity from junction-to-ambient: dP_D/dT_J < 1/R_{0JA}

VSS8D5M12

www.vishay.com

Vishay General Semiconductor

ELECTRICAL CHARACTERISTICS ($T_A = 25 \text{ °C}$ unless otherwise noted)							
PARAMETER	TEST CO	TEST CONDITIONS		TYP.	MAX.	UNIT	
Instantaneous forward voltage	I _F = 2.5 A	– T _A = 25 °C			0.62	-	v
	$I_F = 5 A$			V _E (1)	0.81	0.89	
	I _F = 2.5 A	– T _A = 125 °C	VF ()	0.53	-	v	
	I _F = 5 A		T _A = 125 C	I _A = 125 C		0.64	0.74
Reverse current	V _R = 90 V	$T_{A} = 25 \text{ °C}$		0.01	-		
	v _R = 90 v	T _A = 25 °C T _A = 125 °C	I _R ⁽²⁾	0.9	-	mA	
	V _R = 120 V	T _A = 25 °C T _A = 125 °C	'R (~/	-	0.35	IIIA	
	v _R = 120 v	T _A = 125 °C]	1.6	6		
Typical junction capacitance	4.0 V, 1 MH	4.0 V, 1 MHz		460	-	pF	

Notes

⁽¹⁾ Pulse test: 300 µs pulse width, 1 % duty cycle

⁽²⁾ Pulse test: pulse width \leq 5 ms

THERMAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise specified)				
PARAMETER	SYMBOL	TYP.	MAX.	UNIT
Typical thermal resistance	R _{0JA} ⁽¹⁾⁽²⁾	120	150	°C/W
	R _{0JM} ⁽³⁾	10	12	C/W

Notes

 $^{(1)}$ The heat generated must be less than the thermal conductivity from junction-to-ambient: $dP_D/dT_J < 1/R_{\theta JA}$

(2) Thermal resistance junction-to-ambient to follow JEDEC® 51-2A, device mounted on FR4 PCB, 2 oz., standard footprint

⁽³⁾ Thermal resistance junction-to-mount to follow JEDEC 51-14 transient dual interface test method (TDIM)

ORDERING INFORMATION (Example)						
PREFERRED P/N	UNIT WEIGHT (g)	PREFERRED PACKAGE CODE	BASE QUANTITY	DELIVERY MODE		
VSS8D5M12-M3/H	0.033	Н	3500	7" diameter plastic tape and reel		
VSS8D5M12-M3/I	0.033	I	14 000	13" diameter plastic tape and reel		
VSS8D5M12HM3/H (1)	0.033	Н	3500	7" diameter plastic tape and reel		
VSS8D5M12HM3/I (1)	0.033	I	14 000	13" diameter plastic tape and reel		

Note

(1) AEC-Q101 qualified

Vishay General Semiconductor

RATINGS AND CHARACTERISTICS CURVES ($T_A = 25$ °C unless otherwise noted)

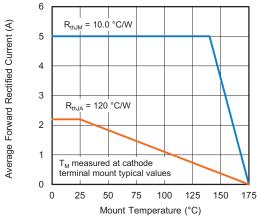


Fig. 1 - Maximum Forward Current Derating Curve

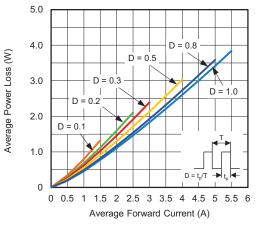


Fig. 2 - Forward Power Loss Characteristics

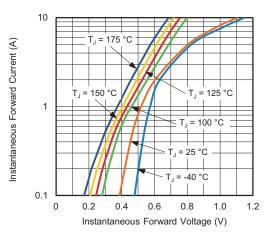


Fig. 3 - Typical Instantaneous Forward Characteristics

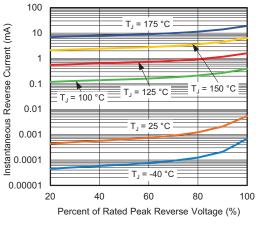


Fig. 4 - Typical Reverse Leakage Characteristics

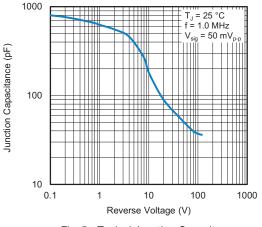


Fig. 5 - Typical Junction Capacitance

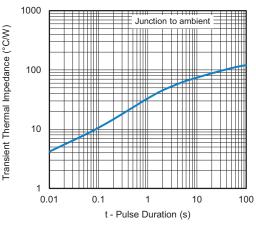


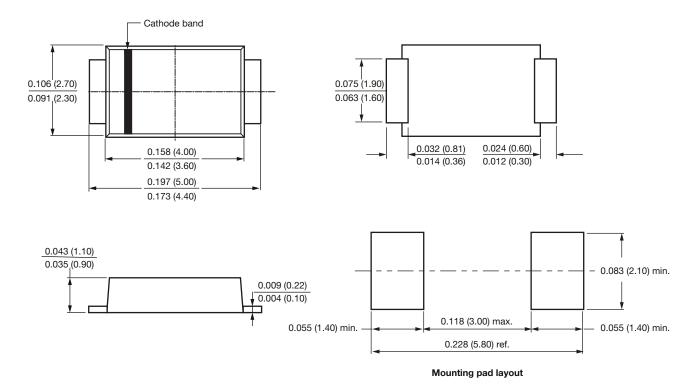
Fig. 6 - Typical Transient Thermal Impedance

Revision: 21-Jan-2019

3

Document Number: 87447

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>



www.vishay.com

Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

SlimSMAW (DO-221AD)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Schottky Diodes & Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

MA4E2039 D1FH3-5063 MBR10100CT-BP MBR1545CT MMBD301M3T5G RB160M-50TR RB551V-30 BAS16E6433HTMA1 BAT 54-02LRH E6327 NSR05F40QNXT5G NTE555 JANS1N6640 SB07-03C-TB-H SB1003M3-TL-W SK310-T SK32A-LTP SK33A-TP SK34B-TP SS3003CH-TL-E GA01SHT18 CRS10I30A(TE85L,QM MA4E2501L-1290 MBRB30H30CT-1G SB007-03C-TB-E SK32A-TP SK33B-TP SK35A-TP SK38B-TP NRVBM120LT1G NTE505 NTSB30U100CT-1G SS15E-TP VS-6CWQ10FNHM3 ACDBA1100LR-HF ACDBA1200-HF ACDBA140-HF ACDBA2100-HF ACDBA3100-HF CDBQC0530L-HF CDBQC0240LR-HF ACDBA340-HF ACDBA260LR-HF ACDBA1100-HF SK310B-TP MA4E2502L-1246 MA4E2502H-1246 NRVBM120ET1G NSR01L30MXT5G NTE573 NTE6081