

COMPLIANT

Standard Recovery Diodes, (Hockey PUK Version), 3800 A

K-PUK (DO-200AC)

PRIMARY CHARACTERISTICS				
I _{F(AV)} 3800 A				
Package	K-PUK (DO-200AC)			
Circuit configuration	Single			

FEATURES

- Wide current range
- High voltage ratings up to 1000 V
- High surge current capabilities
- · Diffused junction
- Hockey PUK version
- Case style K-PUK (DO-200AC)
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- Converters
- Power supplies
- · High power drives
- · Auxiliary system supplies for traction applications

MAJOR RATINGS AND CHARACTERISTICS				
PARAMETER	TEST CONDITIONS	VALUES	UNITS	
		3800	A	
I _{F(AV)}	T _{hs}	55	°C	
I _{F(RMS)}		6230	A	
	T _{hs}	25	°C	
I _{FSM}	50 Hz	35 800	Α	
	60 Hz	37 500		
l ² t	50 Hz	6410	1,420	
	60 Hz	5850		
V _{RRM}	Range	400 to 1000	V	
T _J		-40 to +180	°C	

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 180 °C mA		
	04	400	500			
VS-SD3000CK 08		800	900	75		
	10	1000	1100			

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average forward current	I _{F(AV)}	180° conduction, half sine wave		3800 (1925)	Α	
at heatsink temperature	'F(AV)	Double sid	le (single side) o	cooled	55 (85)	°C
Maximum RMS forward current	I _{F(RMS)}	25 °C heat	sink temperatu	re double side cooled	6230	
		t = 10 ms	No voltage		35 800	A
Maximum peak, one-cycle forward,		t = 8.3 ms	reapplied	Sinusoidal half wave, initial $T_J = T_J$ maximum	37 500	
non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM} reapplied		30 100	
		t = 8.3 ms			31 500	
	l ² t	t = 10 ms	No voltage reapplied		6410	kA ² s
Marrian 124 for front		t = 8.3 ms			5850	
Maximum I ² t for fusing		t = 10 ms	100 % V _{RRM} reapplied		4530	
		t = 8.3 ms			4135	
Maximum I²√t for fusing	I ² √t	t = 0.1 to 10 ms, no voltage reapplied		64 100	kA²√s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum		0.74	M	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.86	V
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x $I_{F(AV)}$ < I < π x $I_{F(AV)}$), $T_J = T_J$ maximum		0.08	mW	
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$			0.07	IIIVV
Maximum forward voltage drop	V _{FM}	$I_{pk} = 6000 \text{ A}, T_J = T_J \text{ maximum}$ $t_p = 10 \text{ ms sinusoidal wave}$			1.22	V

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum junction operating temperature range	TJ		-40 to +180	°C	
Maximum storage temperature range	T _{Stg}		-55 to +200		
Maximum thermal resistance, junction to heatsink	В	DC operation single side cooled	0.042	K/W	
	R _{thJ-hs}	DC operation double side cooled	0.020	r\/ vv	
Mounting force, ± 10 %			22 250 (2250)	N (kg)	
Approximate weight			425	g	
Case style	le See dimensions - link at the end of datasheet K-PUK (DO-)-200AC)		

△R _{thJ-hs} CONDUCTION						
CONDUCTION ANGLE	SINUSOIDAL C	SINUSOIDAL CONDUCTION		R CONDUCTION	TEST CONDITIONS	LINITO
CONDUCTION ANGLE	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE	TEST CONDITIONS	UNITS
180°	0.002	0.002	0.001	0.001		
120°	0.002	0.002	0.002	0.002	$T_J = T_J$ maximum	
90°	0.003	0.003	0.003	0.003		K/W
60°	0.004	0.004	0.004	0.004		
30°	0.007	0.007	0.007	0.007		

Note

• The table above shows the increment of thermal resistance R_{thJ-hs} when devices operate at different conduction angles than DC

www.vishay.com

Vishay Semiconductors

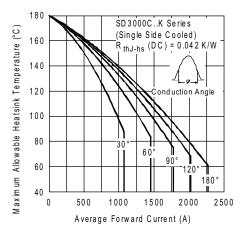


Fig. 1 - Current Ratings Characteristics

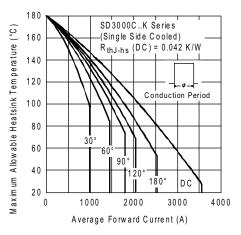


Fig. 2 - Current Ratings Characteristics

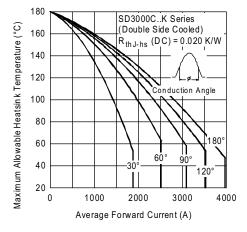


Fig. 3 - Current Ratings Characteristics

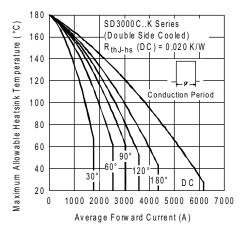


Fig. 4 - Current Ratings Characteristics

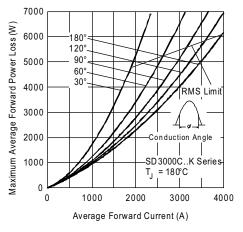


Fig. 5 - Forward Power Loss Characteristics

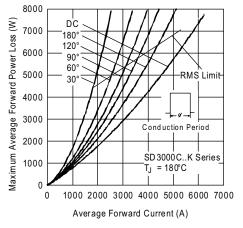


Fig. 6 - Forward Power Loss Characteristics

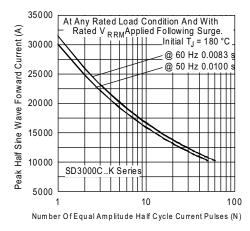


Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

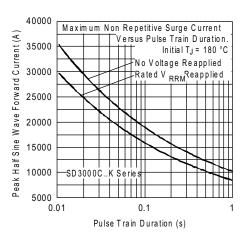


Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

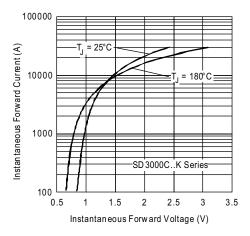


Fig. 9 - Forward Voltage Drop Characteristics

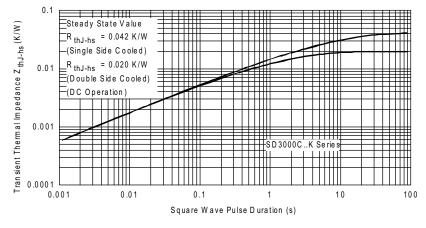
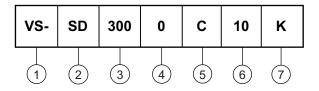



Fig. 10 - Thermal Impedance $Z_{thJ\text{-}hs}$ Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Diode

Essential part number

- 0 = standard recovery

5 - C = ceramic PUK

6 - Voltage code x 100 = V_{RRM} (see Voltage Ratings table)

- K = PUK case K-PUK (DO-200AC)

LINKS TO RELATED DOCUMENTS			
Dimensions	www.vishay.com/doc?95247		

K-PUK (DO-200AC)

DIMENSIONS in millimeters (inches)

Quote between upper and lower pole pieces has to be considered after application of mounting force (see Thermal and Mechanical Specifications)

67 (2.64) DIA. MAX.

Note: A = Anode C = Cathode

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F

RRE02VS6SGTR 067907F MS306 70HF40 T110HF60 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF

ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077

85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K

VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358