Phase Control Thyristors (Hockey PUK Version), 1473 A

PRIMARY CHARACTERISTICS	
$\mathrm{I}_{\mathrm{T}(\mathrm{AV}}$	1473 A
$\mathrm{~V}_{\mathrm{DRM}} \mathrm{V}_{\mathrm{RRM}}$	$1200 \mathrm{~V}, 1400 \mathrm{~V}, 1600 \mathrm{~V}, 1800 \mathrm{~V}$, $2000 \mathrm{~V}, 2200 \mathrm{~V}, 2400 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{TM}}$	1.80 V
I_{GT}	100 mA
$\mathrm{~T}_{\mathrm{J}}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package	$\mathrm{K}-\mathrm{PUK}(\mathrm{A}-24)$
Circuit configuration	Single SCR

FEATURES

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case K-PUK (A-24)
- High profile hockey PUK
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS

PARAMETER	TEST CONDITIONS	VALUES	UNITS
$\mathrm{I}_{\mathrm{T}(\mathrm{AV})}$		1473	A
	$\mathrm{T}_{\text {hs }}$	55	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {(RMS }}$		2913	A
	$\mathrm{T}_{\text {hs }}$	25	${ }^{\circ} \mathrm{C}$
$\mathrm{I}_{\text {TSM }}$	50 Hz	20.0	A
	60 Hz	21.2	
$1^{2} \mathrm{t}$	50 Hz	2000	$\mathrm{kA}^{2} \mathrm{~s}$
	60 Hz	1865	
$\mathrm{I}^{2} \mathrm{~V} \mathrm{t}$		20000	$\mathrm{kA}^{2} \sqrt{ } \mathrm{~s}$
$\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	Range	1200 to 2400	V
t_{q}	Typical	300	$\mu \mathrm{s}$
T_{J}	Range	-40 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS				
TYPE NUMBER	VOLTAGE CODE	VRRM, $^{\text {, MAXIMUM REPETITIVE PEAK }}$ REVERSE VOLTAGE V	$V_{\text {RSM }}$, MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	$I_{\text {RRM }}$ MAXIMUM $\text { AT }_{J}=125^{\circ} \mathrm{C}$ mA
VS-ST1000C..K	12	1200	1300	100
	14	1400	1500	
	16	1600	1700	
	18	1800	1900	
	20	2000	2100	
	22	2200	2300	
	24	2400	2500	

VS-ST1000C..K Series

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current at heatsink temperature	$I_{\text {T(AV) }}$	180° conduction, half sine wave Double side (single side) cooled			1473 (630)	A
					55 (85)	${ }^{\circ} \mathrm{C}$
Maximum RMS on-state current	$\mathrm{I}_{\mathrm{T} \text { (RMS) }}$	DC at $25^{\circ} \mathrm{C}$ heatsink temperature double side cooled			6540	A
Maximum peak, one-cycle, non-repetitive surge current	$I_{\text {TSM }}$	$\mathrm{t}=10 \mathrm{~ms}$	No voltage reapplied	Sinusoidal half wave, initial $T_{J}=T_{J}$ maximum	20.0	kA
		$\mathrm{t}=8.3 \mathrm{~ms}$			21.2	
		$\mathrm{t}=10 \mathrm{~ms}$	100 \% VRRM reapplied		17.0	
		$\mathrm{t}=8.3 \mathrm{~ms}$			18.1	
Maximum $\mathrm{l}^{2} \mathrm{t}$ for fusing	${ }^{2} \mathrm{t}$	$\mathrm{t}=10 \mathrm{~ms}$	No voltage reapplied		2000	$\mathrm{kA}^{2} \mathrm{~s}$
		$\mathrm{t}=8.3 \mathrm{~ms}$			1865	
		$\mathrm{t}=10 \mathrm{~ms}$	100 \% VRRM reapplied		1445	
		$\mathrm{t}=8.3 \mathrm{~ms}$			1360	
Maximum $I^{2} \sqrt{ }$ t for fusing	$\mathrm{I}^{2} \sqrt{\mathrm{t}}$	$\mathrm{t}=0.1 \mathrm{~ms}$ to 10 ms , no voltage reapplied			20000	$\mathrm{kA}^{2} \sqrt{ } \mathrm{~s}$
Low level value of threshold voltage	$\mathrm{V}_{\mathrm{T} \text { (TO) } 1}$	(16.7 \% $\times \pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}<\mathrm{l}<\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}$), $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ maximum			0.950	V
High level value of threshold voltage	$\mathrm{V}_{\mathrm{T} \text { (TO)2 }}$	$\left(\mathrm{l}>\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}\right), \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ maximum			1.024	
Low level value of on-state slope resistance	$\mathrm{r}_{\mathrm{t} 1}$	(16.7 \% $\times \pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}<\mathrm{I}<\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}$), $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum			0.283	$\mathrm{m} \Omega$
High level value of on-state slope resistance	$\mathrm{r}_{\mathrm{t} 2}$	$\left(\mathrm{l}>\pi \times \mathrm{I}_{\mathrm{T}(\mathrm{AV})}\right), \mathrm{T}_{J}=\mathrm{T}_{\mathrm{J}}$ maximum			0.265	
Maximum on-state voltage drop	$\mathrm{V}_{\text {TM }}$	$\mathrm{I}_{\mathrm{pk}}=3000 \mathrm{~A}, \mathrm{~T}_{J}=125^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$ sine pulse			1.80	V
Maximum holding current	I_{H}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, anode supply 12 V resistive load			600	mA
Typical latching current	I_{L}				1000	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive $20 \mathrm{~V}, 20 \Omega, \mathrm{t}_{\mathrm{r}} \leq 1 \mu \mathrm{~s}$ $\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, anode voltage $\leq 80 \% \mathrm{~V}_{\text {DRM }}$	1000	A/ $\mu \mathrm{s}$
Typical delay time	$\mathrm{t}_{\text {d }}$	Gate current $1 \mathrm{~A}, \mathrm{dl}_{\mathrm{g}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s}$ $V_{d}=0.67 \% V_{D R M}, T_{J}=25^{\circ} \mathrm{C}$	1.9	
Typical turn-off time	$\mathrm{t}_{\text {q }}$	$\mathrm{I}_{\mathrm{TM}}=550 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ maximum, $\mathrm{dl} / \mathrm{dt}=40 \mathrm{~A} / \mu \mathrm{s}$, $\mathrm{V}_{\mathrm{R}}=50 \mathrm{~V}, \mathrm{dV} / \mathrm{dt}=20 \mathrm{~V} / \mu \mathrm{s}$, gate $0 \mathrm{~V} 100 \Omega, \mathrm{t}_{\mathrm{p}}=500 \mu \mathrm{~s}$	300	

BLOCKING	SYMBOL	TEST CONDITIONS	VALUES	UNITS
PARAMETER	$\mathrm{dV} / \mathrm{dt}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum linear to 80% rated $\mathrm{V}_{\text {DRM }}$	500	$\mathrm{~V} / \mu \mathrm{s}$
Maximum critical rate of rise of off-state voltage	$\mathrm{I}_{\mathrm{RRM}}$, IRM	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, rated $\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$ applied	100	mA
Maximum peak reverse and off-state leakage current				

VS-ST1000C..K Series

TRIGGERING						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES		UNITS
				TYP.	MAX.	
Maximum peak gate power	P_{GM}	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, $\mathrm{t}_{\mathrm{p}} \leq 5 \mathrm{~ms}$		16		W
Maximum peak average gate power	$\mathrm{P}_{\mathrm{G}(\mathrm{AV})}$	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, $\mathrm{f}=50 \mathrm{~Hz}, \mathrm{~d} \%=50$		3		
Maximum peak positive gate current	I_{GM}	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum, $\mathrm{t}_{\mathrm{p}} \leq 5 \mathrm{~ms}$		3.0		A
Maximum peak positive gate voltage	$+\mathrm{V}_{\mathrm{GM}}$			20		V
Maximum peak negative gate voltage	$-V_{G M}$			5.0		
DC gate current required to trigger	$I_{\text {GT }}$	$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$	Maximum required gate trigger/ current/voltage are the lowest value which will trigger all units 12 V anode to cathode applied	200	-	mA
		$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		100	200	
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		50	-	
		$\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}$		1.4	-	
DC gate voltage required to trigger	V_{GT}	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		1.1	3.0	v
		$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		0.9	-	
DC gate current not to trigger	$I_{\text {GD }}$		Maximum gate current/voltage not to trigger is the maximum			mA
DC gate voltage not to trigger	$V_{G D}$		unit with rated $V_{\text {DRM }}$ anode to cathode applied	0.2		V

THERMAL AND MECHANICAL SPECIFICATIONS

PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum operating temperature range	T_{J}		-40 to +125	${ }^{\circ} \mathrm{C}$
Maximum storage temperature range	$\mathrm{T}_{\text {Stg }}$		-40 to +150	
Maximum thermal resistance,	$\mathrm{R}_{\text {thJ }}$ hs	DC operation single side cooled	0.042	K/W
junction to heatsink		DC operation double side cooled	0.021	
Maximum thermal resistance, case to heatsink	$\mathrm{R}_{\text {thC-hs }}$	DC operation single side cooled	0.006	
		DC operation double side cooled	0.003	
Mounting force, ± 10 \%			$\begin{aligned} & 24500 \\ & (2500) \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{N} \\ (\mathrm{~kg}) \end{gathered}$
Approximate weight			425	9
Case style		See dimensions - link at the end of datasheet	K-PUK (A-24)	

$\Delta \mathbf{R}_{\text {thJc }}$ CONDUCTION

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION		RECTANGULAR CONDUCTION		TEST CONDITIONS	UNITS
	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE		
180°	0.003	0.003	0.002	0.002	$\mathrm{T}_{J}=\mathrm{T}_{J}$ maximum	K/W
120°	0.004	0.004	0.004	0.004		
90°	0.005	0.005	0.005	0.005		
60°	0.007	0.007	0.007	0.007		
30°	0.012	0.012	0.012	0.012		

Note

- The table above shows the increment of thermal resistance $R_{\text {thJC }}$ when devices operate at different conduction angles than $D C$

Fig. 1 - Current Ratings Characteristics

Fig. 2 - Current Ratings Characteristics

Fig. 3 - Current Ratings Characteristics

Fig. 4 - Current Ratings Characteristics

Fig. 5 - On-State Power Loss Characteristics

Fig. 6 - On-State Power Loss Characteristics

Number Of Equal Amplitude Half Cycle Current Pulses (N)
Fig. 7 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 8 - Maximum Non-Repetitive Surge Current Single and Double Side Cooled

Fig. 9 - On-State Voltage Drop Characteristics

Fig. 10 - Thermal Impedance $Z_{\text {thJ-hs }}$ Characteristics

Fig. 11 - Gate Characteristics

ORDERING INFORMATION TABLE

1 - Vishay Semiconductors product
2 - Thyristor
3 - Essential part number
$4 \quad-\quad 0=$ converter grade
$5 \quad-\quad$ C $=$ ceramic PUK
6 - Voltage code $\times 100=V_{\text {RRM }}$ (see Voltage Ratings table)
$7 \quad-\quad K=$ PUK case K-PUK (A-24)
$8 \quad-\quad 0=$ eyelet terminals (gate and auxiliary cathode unsoldered leads)
1 = fast-on terminals (gate and auxiliary cathode unsoldered leads)
2 = eyelet terminals (gate and auxiliary cathode soldered leads)
3 = fast-on terminals (gate and auxiliary cathode soldered leads)
$9-\quad$ Critical dV/dt: • none $=500 \mathrm{~V} / \mu \mathrm{s}$ (standard selection)

- $\mathrm{L}=1000 \mathrm{~V} / \mu \mathrm{s}$ (special selection)

LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95081

K-PUK (A-24)

DIMENSIONS in millimeters (inches)
Creepage distance: 28.88 (1.137) minimum Strike distance: 17.99 (0.708) minimum

> Note:
> A = Anode
> C = Cathode
> G = Gate

Quote between upper and lower pole pieces has to be considered after application of mounting force (see thermal and mechanical specification)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for SCR Modules category:
Click to view products by Vishay manufacturer:
Other Similar products are found below :
DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD140N18KOF TD162N16KOF-A TD330N16AOF
T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T590N16TOF TD180N16KOF VSKE236/16PBF T1081N60TOH
TT61N08KOF TD251N18KOF TD430N22KOF TT162N08KOF T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF
TD160N16SOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF
TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF T360N26TOF NTE5728
ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2
MCD501-18IO2 SK 100 KQ 12

