VS-ST180C Series

Vishay Semiconductors

Phase Control Thyristors (Hockey PUK Version), 350 A

A-PUK (TO-200AB)

PRIMARY CHARACTERISTICS						
I _{T(AV)}	350 A					
V _{DRM} /V _{RRM}	400 V, 800 V, 1200 V, 1600 V, 1800 V, 2000 V					
V _{TM}	1.96 V					
I _{GT}	90 mA					
TJ	-40 °C to +125 °C					
Package	A-PUK (TO-200AB)					
Circuit configuration	Single SCR					

FEATURES

- Center amplifying gate
- Metal case with ceramic insulator
- International standard case A-PUK (TO-200AB)
- Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>

TYPICAL APPLICATIONS

- DC motor controls
- Controlled DC power supplies
- AC controllers

MAJOR RATINGS AND CHARACTERISTICS						
PARAMETER	TEST CONDITIONS	VALUES	UNITS			
1		350	A			
I _{T(AV)}	T _{hs}	55	°C			
1		660	A			
T _{hs}		25	°C			
1	50 Hz	5000	•			
I _{TSM}	60 Hz	5230	— A			
l ² t	50 Hz	125	– kA ² s			
141	60 Hz	114	KA-S			
V _{DRM} /V _{RRM}		400 to 2000	V			
tq	Typical	100	μs			
TJ		-40 to +125	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{DRM} /V _{RRM} , MAXIMUM REPETITIVE PEAK AND OFF-STATE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK VOLTAGE V	I_{DRM}/I_{RRM} MAXIMUM AT T _J = T _J MAXIMUM mA			
	04	400	500				
	08	800	900				
VS-ST180CC	12	1200	1300	30			
V3-31100CC	16	1600	1700	30			
	18	1800	1900	1			
	20	2000	2100				

Revision: 27-Sep-17

Document Number: 94396

For technical questions within your region: <u>DiodesAmericas@vishay.com</u>, <u>DiodesAsia@vishay.com</u>, <u>DiodesEurope@vishay.com</u> THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT <u>www.vishay.com/doc?91000</u>

1

COMPLIANT

VS-ST180C Series

Vishay Semiconductors

ABSOLUTE MAXIMUM RATING	5					
PARAMETER	SYMBOL		TEST CON	IDITIONS	VALUES	UNITS
Maximum average on-state current	L	180° condu	ction, half sine v	wave	350 (140)	А
at heatsink temperature	I _{T(AV)}	double side	(single side) co	oled	55 (85)	°C
Maximum RMS on-state current	I _{T(RMS)}	DC at 25 °C	heatsink temp	erature double side cooled	660	
		t = 10 ms	No voltage		5000	
Maximum peak, one-cycle	L	t = 8.3 ms	reapplied		5230	A
non-repetitive surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		4200	
		t = 8.3 ms	reapplied	Sinusoidal half wave,	4400	
Mariana 124 fan faring	l ² t	t = 10 ms	No voltage reapplied	initial $T_J = T_J$ maximum	125	kA ² s
		t = 8.3 ms			114	
Maximum I ² t for fusing	1-1	t = 10 ms	100 % V _{RBM}		88	
		t = 8.3 ms	reapplied		81	
Maximum I ² √t for fusing	l²√t	t = 0.1 to 10) ms, no voltage	e reapplied	1250	kA²√s
Low level value of threshold voltage	V _{T(TO)1}	(16.7 % x π	$x \ I_{T(AV)} < I < \pi \ x$	$I_{T(AV)}$), $T_J = T_J$ maximum	1.08	v
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)})$), $T_J = T_J$ maxin	num	1.14	v
Low level value of on-state slope resistance	r _{t1}	(16.7 % x π	$x \ I_{T(AV)} < I < \pi \ x$	$I_{T(AV)}$), $T_J = T_J$ maximum	1.18	mΩ
High level value of on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J maximum$			1.14	1115.2
Maximum on-state voltage	V _{TM}	I _{pk} = 750 A,	$T_J = T_J$ maximu	ım, t _p = 10 ms sine pulse	1.96	V
Maximum holding current	Ι _Η	T _ 05 °C	anada ayanbi 1	2 V registive load	600	m۸
Maximum (typical) latching current	١L	$1_{\rm J} = 25$ C,	anoue supply 1	2 V resistive load	1000 (300)	mA

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum non-repetitive rate of rise of turned-on current	dl/dt	Gate drive 20 V, 20 $\Omega,t_r \le 1~\mu s$ T_J = T_J maximum, anode voltage $\le 80~\%~V_{DRM}$	1000	A/µs
Typical delay time	t _d	Gate current 1 A, dl _g /dt = 1 A/ μ s V _d = 0.67 % V _{DRM} , T _J = 25 °C	1.0	
Typical turn-off time	tq	I_{TM} = 300 A, T_J = T_J maximum, dl/dt = 20 A/µs, V_R = 50 V, dV/dt = 20 V/µs, gate 0 V 100 $\Omega,$ t_p = 500 µs	100	μs

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum linear to 80 % rated V_{DRM}	500	V/µs
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	30	mA

Vishay Semiconductors

TRIGGERING	G
------------	---

TRIGGERING							
PARAMETER	SYMBOL	т	TEST CONDITIONS				
FANAMETEN	STWIDOL	•	EST CONDITIONS	typ.	max.	S	
Maximum peak gate power	P _{GM}	T _J = T _J maximum,	$t_p \le 5 ms$	10		w	
Maximum average gate power	P _{G(AV)}	$T_J = T_J$ maximum,	f = 50 Hz, d% = 50	2	.0	~~	
Maximum peak positive gate current	I _{GM}			3	.0	А	
Maximum peak positive gate voltage	+ V _{GM}	$T_J = T_J$ maximum,	$t_p \le 5 ms$	2	0	V	
Maximum peak negative gate voltage	- V _{GM}			5.0			
	I _{GT}	T _J = - 40 °C		180	-		
DC gate current required to trigger		T _J = 25 °C	Maximum required gate trigger/	90	150	mA	
		T _J = 125 °C	current/voltage are the lowest value		-		
		T _J = - 40 °C	which will trigger all units 12 V	2.9	-		
DC gate voltage required to trigger	V _{GT}	T _J = 25 °C	anode to cathode applied	1.8	3.0	V	
		T _J = 125 °C		1.2	-		
DC gate current not to trigger	I _{GD}		Maximum gate current/voltage not	1	0	mA	
DC gate voltage not to trigger	V _{GD}	$T_J = T_J maximum$	to trigger is the maximum value which will not trigger any unit with rated V _{DRM} anode to cathode applied	0.25		v	

THERMAL AND MECHANICAL SPECIFICATIONS					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNIT S	
Maximum operating junction temperature range	TJ	TJ		°C	
Maximum storage temperature range	T _{Stg}		-40 to 150	2	
Maximum thermal resistance,	R _{thJ-hs}	DC operation single side cooled	0.17		
junction to heatsink		DC operation double side cooled	0.08	K/W	
Maximum thermal resistance,		DC operation single side cooled	0.033	rv/W	
case to heatsink	R _{thC-hs}	DC operation double side cooled	0.017		
Mounting force, ± 10 %			4900 (500)	N (kg)	
Approximate weight			50	g	
Case style		See dimensions - link at the end of datasheet	A-PUK (TO-2	200AB)	

CONDUCTION ANGLE	SINUSOIDAL CONDUCTION			NGULAR JCTION	TEST CONDITIONS	UNITS	
	SINGLE SIDE	DOUBLE SIDE	SINGLE SIDE	DOUBLE SIDE			
180°	0.015	0.015	0.011	0.011			
120°	0.018	0.019	0.019	0.019			
90°	0.024	0.024	0.026	0.026	$T_J = T_J maximum$	K/W	
60°	0.035	0.035	0.036	0.037			
30°	0.060	0.060	0.060	0.061			


Note

• The table above shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Revision: 27-Sep-17

Vishay Semiconductors

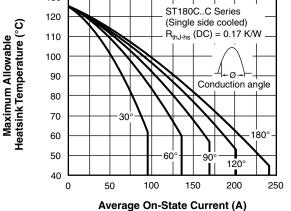


Fig. 1 - Current Ratings Characteristics

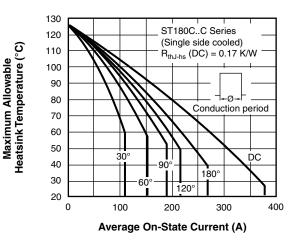


Fig. 2 - Current Ratings Characteristics

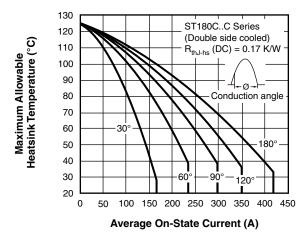


Fig. 3 - Current Ratings Characteristics

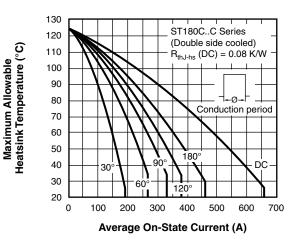


Fig. 4 - Current Ratings Characteristics

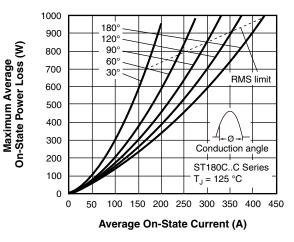


Fig. 5 - On-State Power Loss Characteristics

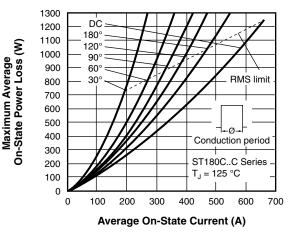
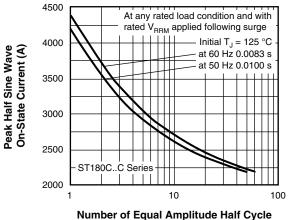


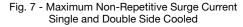
Fig. 6 - On-State Power Loss Characteristics

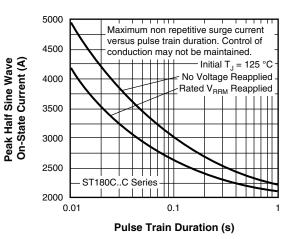
Revision: 27-Sep-17

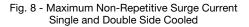

4

Document Number: 94396

For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000


VS-ST180C Series


Vishay Semiconductors



www.vishay.com

Current Pulses (N)

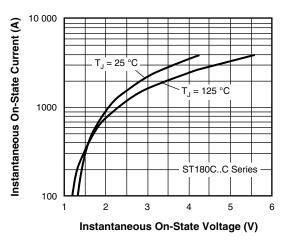
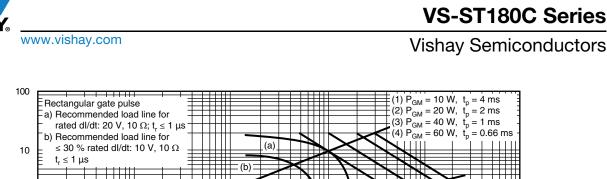
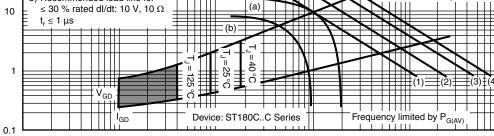




Fig. 9 - On-State Voltage Drop Characteristics

Fig. 10 - Thermal Impedance Z_{thJ-hs} Characteristics

Instantaneous Gate Current (A) Fig. 11 - Gate Characteristics

1

10

0.1

100

ORDERING INFORMATION TABLE

0.001

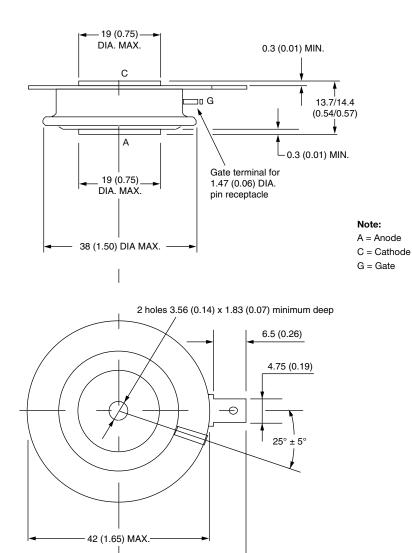
0.01

SHA

Instantaneous Gate Voltage (V)

Device code	VS-	ST	18	0	С	20	С	1	-	
	1	2	3	4	5	6	7	8	9	I
	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 -	Thy Ess 0 = C = Volt C = 0 = 1 =	ristor ential pa convert ceramic age coo PUK ca eyelet t fast-on	art numł er grade c PUK de x 100 ase A-Pl erminals termina	e JK (TO-/ g (gate a ls (gate a	(see Vo 200AB) nd auxil and aux	liary cat iliary ca	hode u	nsoldere	ed leads) red leads)
	9 -	3 =	fast-on	termina dt: • Nor	(gate a ls (gate ; ne = 500 1000 V/	and aux) V/µs (s	iliary ca	athode s d select	soldered	,

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95074			



A-PUK (TO-200AB)

DIMENSIONS in millimeters (inches)

Anode to gate

Creepage distance: 7.62 (0.30) minimum Strike distance: 7.12 (0.28) minimum

◄ 28 (1.10) →

Quote between upper and lower pole pieces has to be considered after application of mounting force (see thermal and mechanical specification)

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD140N18KOF TD162N16KOF-A TD330N16AOF T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T590N16TOF TD180N16KOF VSKE236/16PBF T1081N60TOH TT61N08KOF TD251N18KOF TD430N22KOF TT162N08KOF T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF TD160N16SOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF TZ860N16KOF TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF T360N26TOF NTE5728 ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2 MCD501-18IO2