

www.vishay.com

Vishay Semiconductors

FRED Pt® Gen 5, Ultrafast Rectifier Diode, 600 V, 240 A

PRIMARY CHARACTERISTICS					
I _{F(AV)} at 95 °C (per module)	240 A				
V _R	600 V				
Q _{rr} (typical)	260 nC				
t _{rr}	52 ns				
Туре	Modules - diode, FRED Pt®				
Package	TO-244				
Circuit configuration	Two diodes common cathode				

FEATURES

- Ultrafast and optimized Q_{rr}
- Best in class forward voltage drop and switching losses trade off

- Optimized for high speed operation
- 175 °C maximum operation junction temperature
- UL approved file E222165
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

BENEFITS

- · Reduced RFI and EMI
- Higher frequency operation
- Reduced snubbing
- · Reduced parts count

DESCRIPTION / APPLICATIONS

Featuring a unique combination of low conduction and switching losses the FRED Pt® Gen 5 is the right choice for soft switched and resonant converters, as well as medium frequency hard switching converters.

These devices are also ideally suited for HF welding, power converters, and other applications where switching losses are significant portion of the total losses.

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Cathode to anode voltage	V_{R}		600	V	
		T _C = 25 °C	229		
Continuous forward current per diode	I _{F(DC)}	T _C = 85 °C	160	A	
		T _C = 115 °C	120		
Non-repetitive single pulse forward current per diode	I _{FSM}	T _C = 25 °C	1300		
Maximum navvar discination nor diada	P _D	T _C = 25 °C	395	14/	
Maximum power dissipation per diode		T _C = 115 °C	158	W	
Storage temperature range	T _{Stg}		-40 to +150	°C	
Operating junction temperature range	TJ		-40 to +175	°C	

ELECTRICAL SPECIFICATIONS PER LEG (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS MIN. TYP. MAX.		MAX.	UNITS	
Breakdown voltage	V_{BR}	I _R = 200 μA	600	-	-	
Forward voltage	V _{FM}	I _F = 120 A	-	1.52	1.68	
		I _F = 240 A	-	1.67	1.96	V
		I _F = 120 A, T _J = 150 °C	-	1.17	-	
		I _F = 240 A, T _J = 150 °C	-	1.46	-	
Reverse leakage current	I _{RM}	$T_J = 150 ^{\circ}\text{C}, V_R = 600 ^{\circ}\text{V}$	-	0.18	0.5	mA
Series inductance	L _S	From top of terminal hole to mounting plane	-	5	-	nΗ
Maximum junction capacitance per leg	C _T	V _{DC} = 5 V, f = 1 MHz, 25 °C	ı	-	0.7	nF

Revision: 08-Feb-2022 1 Document Number: 96922

Vishay Semiconductors

DYNAMIC RECOVERY CHARACTERISTICS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST COI	TEST CONDITIONS MIN.			MAX.	UNITS
Deverse receiver time	1	T _J = 25 °C		-	52	-	
Reverse recovery time t _{rr}	T _J = 125 °C		-	135	-	ns	
Dools woodstons or worth	I _{RRM}	T _J = 25 °C	$I_F = 50 \text{ A},$ $dI_F/dt = 200 \text{ A/}\mu\text{s},$ $V_R = 300 \text{ V}$	-	4.0	-	Α
Peak recovery current		T _J = 125 °C		-	11.0	-	^
Reverse recovery charge	Q _{rr}	T _J = 25 °C		-	260	-	nC
		T _J = 125 °C		-	1530	-	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS
Thermal resistance,	per leg	Б	-	-	0.38	
junction to case	per module	R_{thJC}	-	-	0.19	°C/W
Thermal resistance, case	to heatsink	R _{thCS}	-	0.10	-	
Weight			-	68	-	g
			-	2.4	-	oz.
Mounting torque			30 (3.4)	-	40 (4.6)	
Mounting torque center hole			12 (1.4)	-	18 (2.1)	lbf · in (N · m)
Terminal torque			30 (3.4)	-	40 (4.6)] (\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Vertical pull			-	-	80	lbf ⋅ in
2" lever pull			-	-	35	1 101 - 101
Case style			TO-244			

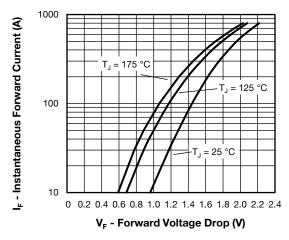


Fig. 1 - Typical Forward Voltage Drop vs. Instantaneous Forward Current (Per Diode)

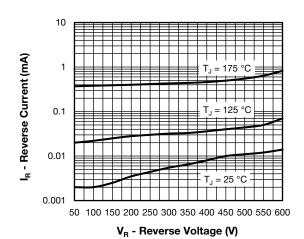


Fig. 2 - Typical Reverse Current vs. Reverse Voltage (Per Diode)

Vishay Semiconductors



Fig. 3 - Typical Reverse Recovery Charge vs dl_F/dt (Per Diode)

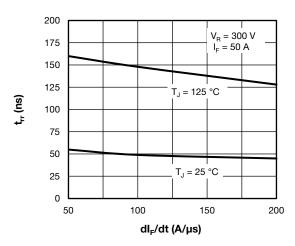


Fig. 4 - Typical Reverse Recovery Time vs dl_F/dt (Per Diode)

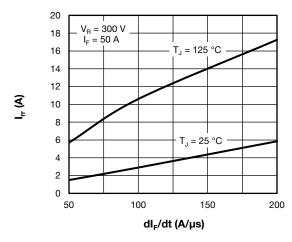


Fig. 5 - Typical Reverse Recovery Current vs dl_F/dt (Per Diode)

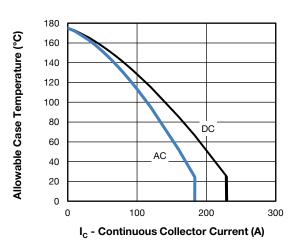


Fig. 6 - Maximum Continuous Forward Current vs.

Case Temperature

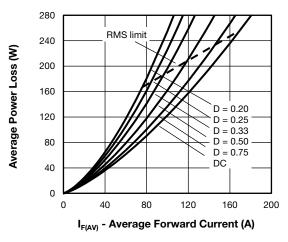


Fig. 7 - Average Power Loss vs. Average Forward Current (Forward Power Loss Characteristics)

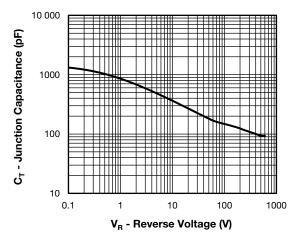


Fig. 8 - Typical Junction Capacitance vs. Reverse Voltage

Vishay Semiconductors

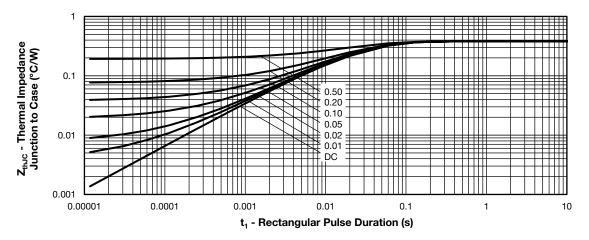
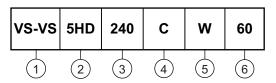



Fig. 9 - Z_{thJC} Maximum Thermal Impedance Junction to Case vs. t₁ Rectangular Pulse Duration

ORDERING INFORMATION TABLE

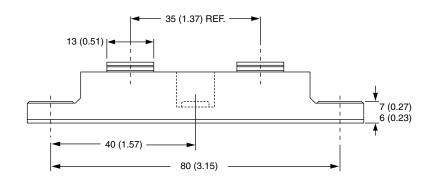
Device code

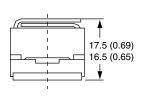
- 1 Vishay Semiconductors product
- 2 5HD = high speed FRED Pt® Gen 5
- 3 Current rating (240 = 240 A)
- Circuit configuration:

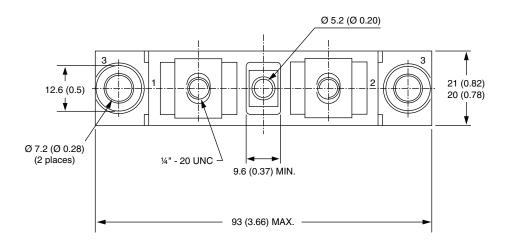
C = two diodes common cathode

- 5 W = TO-244 wire bondable not isolated
- 6 Voltage rating (60 = 600 V)

CIRCUIT CONFIGURATION			
CIRCUIT	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING	
Two diodes common cathode	С	Lug Lug terminal terminal anode 1 anode 2 Base common cathode	


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95021			




www.vishay.com

Vishay Semiconductors

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Rectifiers category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

70HFR40 RL252-TP 150KR30A 1N5397 NTE5841 NTE6038 SCF5000 1N4002G 1N4005-TR JANS1N6640US 481235F

RRE02VS6SGTR 067907F MS306 70HF40 T85HFL60S02 US2JFL-TP A1N5404G-G CRS04(T5L,TEMQ) ACGRA4007-HF

ACGRB207-HF CLH03(TE16L,Q) ACGRC307-HF ACEFC304-HF NTE6356 NTE6359 NTE6002 NTE6023 NTE6039 NTE6077

85HFR60 40HFR60 1N1186RA 70HF120 85HFR80 D126A45C SCF7500 D251N08B SCHJ22.5K SM100 SCPA2 SCH10000 SDHD5K

VS-12FL100S10 ACGRA4001-HF D1821SH45T PR D1251S45T NTE5990 NTE6358 NTE6162