

Thyristor/Thyristor (Super MAGN-A-PAK Power Modules), 570 A

Super MAGN-A-PAK

PRIMARY CHARACTERISTICS				
I _{T(AV)}	570 A			
Туре	Modules - thyristor, standard			
Package	Super MAGN-A-PAK			

FEATURES

- · High current capability
- High surge capability
- · Industrial standard package
- 3000 V_{RMS} isolating voltage with non-toxic substrate
- · Designed and qualified for industrial level
- UL approved file E78996
- Material categorization: for definitions of compliance please see www.vishav.com/doc?99912

TYPICAL APPLICATIONS

- Motor starters
- DC motor controls AC motor controls
- Uninterruptible power supplies

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	VALUES	UNITS		
I _{T(AV)}	T _C = 85 °C	570			
I _{T(RMS)}	T _C = 85 °C	894	A		
I _{TSM}	50 Hz	18 000	A		
	60 Hz	18 800			
l ² t	50 Hz	1620	kA ² s		
	60 Hz	1473	KA-S		
l ² √t		16 200	kA ^{2√} s		
V _{DRM} /V _{RRM}		1600	V		
T _{Stg}	Range	-40 to +125	°C		
T _J	Range	-40 to +135	C		

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS						
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I_{RRM}/I_{DRM} MAXIMUM AT T _J = T _J MAXIMUM mA		
VS-VSKT570-16PbF	16	1600	1700	110		

PARAMETER	SYMBOL		TEST CONDI	TIONS	VALUES	UNITS
Maximum average on-state current		1000			570 85	Α
at case temperature	I _{T(AV)}	180° conductio	on, half sine wave			°C
Maximum RMS on-state current	I _{T(RMS)}	180° conduction	on, half sine wave	at T _C = 85 °C	894	Α
		t = 10 ms	No voltage		18.0	
Maximum peak, one-cycle,	I _{TSM.}	t = 8.3 ms	reapplied		18.8	kA kA ² s
non-repetitive on-state surge current	I _{FSM}	t = 10 ms	100 % V _{RBM}		15.1	
		t = 8.3 ms	reapplied	Sinusoidal	15.8	
Maximum I ² t for fusing		t = 10 ms	No voltage reapplied	half wave, initial $T_J = T_J$ maximum	1620	
	l ² t	t = 8.3 ms			1473	
		t = 10 ms	100 % V _{RRM}		1146	
		t = 8.3 ms	reapplied		1042	
Maximum I ² √t for fusing	I ² √t	t = 0.1 ms to 10 ms, no voltage reapplied		16 200	kA²√s	
Low level value or threshold voltage	V _{T(TO)1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.59	V	
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		0.63	v	
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)} < I < \pi$ x $I_{T(AV)}$), $T_J = T_J$ maximum		0.41	mΩ	
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		0.38	11152	
Maximum on-state voltage drop	V_{TM}	I_{pk} = 1500 A, T_J = 25 °C, t_p = 10 ms sine pulse		1.36	V	
Maximum holding current	I _H	T 05 °C	ada ayınınlı 10 V	nistive lead	500	T .
Maximum latching current	ΙL	T _J = 25 °C, anode supply 12 V resistive load		1000	- mA	

SWITCHING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum rate of rise of turned-on current	dl/dt	$T_J = T_J$ maximum, $I_{TM} = 400$ A, V_{DRM} applied	1000	A/µs	
Typical delay time	t _d	Gate current 1 A, $dI_g/dt = 1 A/\mu s$ $V_d = 0.67 \% V_{DRM}$, $T_J = 25 °C$	2.0		
Typical turn-off time	t _q	I_{TM} = 750 A; T_J = T_J maximum, dl/dt = - 60 A/μs, V_R = 50 V, dV/dt = 20 V/μs, gate 0 V 100 Ω	65 to 240	μs	

BLOCKING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum critical rate of rise of off-state voltage	dV/dt	$T_J = T_J$ maximum, linear to $V_D = 80 \% V_{DRM}$	1000	V/µs
RMS insulation voltage	V _{INS}	t = 1 s	3000	V
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	$T_J = T_J$ maximum, rated V_{DRM}/V_{RRM} applied	110	mA

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P_{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	10	W
Maximum peak average gate power	P _{G(AV)}	$T_J = T_J$ maximum, $f = 50$ Hz, $d\% = 50$	2.0	VV
Maximum peak positive gate current	+I _{GM}		3.0	Α
Maximum peak positive gate voltage	+V _{GM}	$T_J = T_J$ maximum, $t_p \le 5$ ms	20	V
Maximum peak negative gate voltage	-V _{GM}		5.0	
Maximum DC gate current required to trigger	I _{GT}	T _{.I} = 25 °C, V _{ak} 12 V	200	mA
DC gate voltage required to trigger	V_{GT}	$ij = 25$ G, v_{ak} 12 V	3.0	V
DC gate current not to trigger	I _{GD}	$T_J = T_J$ maximum	10	mA
DC gate voltage not to trigger	V_{GD}		0.25	V

THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction operating temperature range	TJ		-40 to +135	°C
Maximum storage temperature range	T _{Stg}		-40 to +125	
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.06	14004
Maximum thermal resistance, case to heatsink per module	R _{thC-hs}	thC-hs Mounting surface smooth, flat and greased		K/W
Mounting Super MAGN-A-PAK to heatsing	nk	A mounting compound is recommended and the torque should be rechecked after a period	6 to 8	Nm
torque busbar to super MAGN-A-PA	K	of 3 hours to allow for the spread of the compound	12 to 15	INIII
Approximate weight			1500	g
Case style		See dimensions (link at the end of datasheet)	Super MAGN-	-A-PAK

△R _{thJC} CONDUCTIO	N			
CONDUCTION ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	TEST CONDITIONS	UNITS
180°	0.009	0.006		
120°	0.011	0.011		
90°	0.014	0.015	$T_J = T_J$ maximum	K/W
60°	0.021	0.022		
30°	0.037	0.038		

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

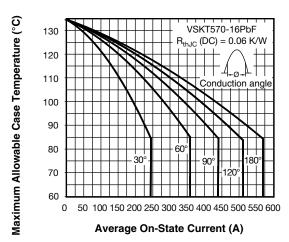


Fig. 1 - Current Ratings Characteristics

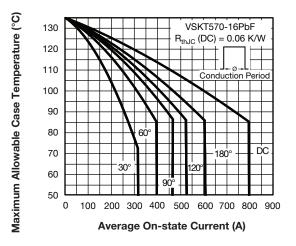


Fig. 2 - Current Ratings Characteristics

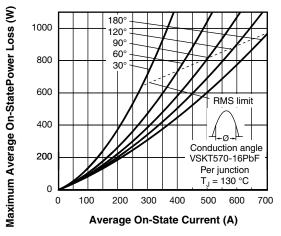


Fig. 3 - On-State Power Loss Characteristics

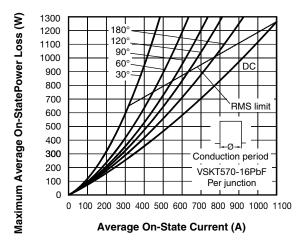


Fig. 4 - On-State Power Loss Characteristics

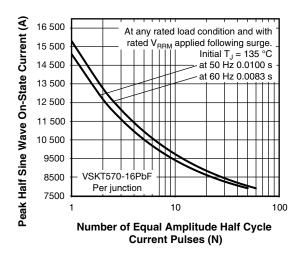


Fig. 5 - Maximum Non-Repetitive Surge Current

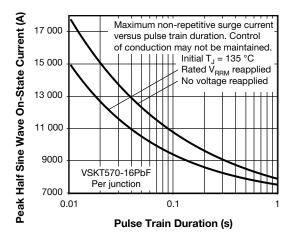
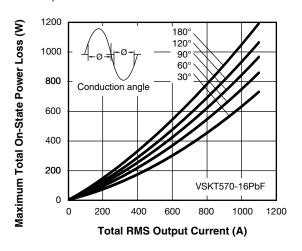



Fig. 6 - Maximum Non-Repetitive Surge Current

www.vishay.com

Vishay Semiconductors

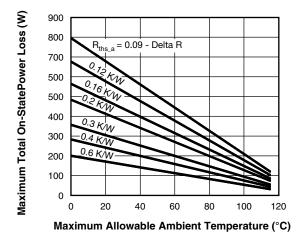


Fig. 7 - On-State Power Loss Characteristics

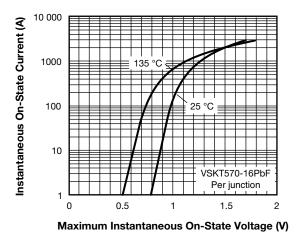


Fig. 8 - On-State Voltage Drop Characteristics

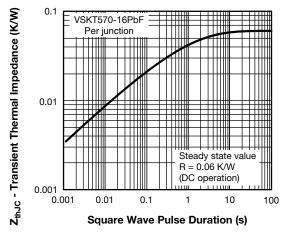


Fig. 9 - Thermal Impedance Z_{thJC} Characteristics

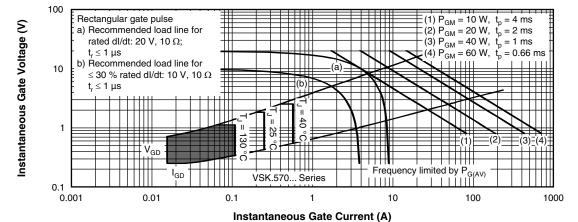
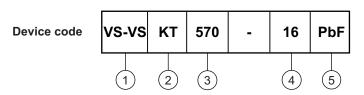



Fig. 10 - Gate Characteristics

ORDERING INFORMATION TABLE

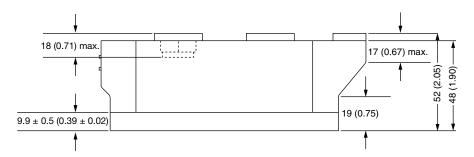
Vishay Semiconductors product

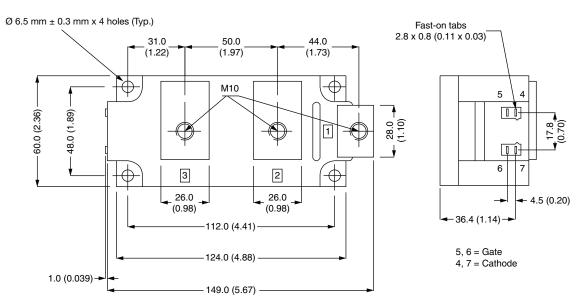
2 - Circuit configuration (see below)

Current rating

- Voltage code x 100 = V_{RRM}

5 - Lead (Pb)-free


CIRCUIT CONFIGURATION					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Two SCRs doubler circuit	KT	VSKT 1 2 4 (K1) 7 (K2) 0 5 (G1) 6 (G2)			


LINKS TO RELAT	ED DOCUMENTS
Dimensions	www.vishay.com/doc?95283

Super MAGN-A-PAK Thyristor/Diode

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD140N18KOF TD162N16KOF-A TD330N16AOF

T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T590N16TOF VSKE236/16PBF T1081N60TOH TT61N08KOF

TD251N18KOF TD430N22KOF TT162N08KOF T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF TD160N16SOF

T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF TZ860N16KOF

TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF T360N26TOF NTE5728

ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2

MCD501-18IO2 SK 100 KQ 12