

Vishay Semiconductors

AAP Gen 7 (TO-240AA) Power Modules Thyristor/Thyristor, 75 A

ADD-A-PAK

PRIMARY CHARACTERISTICS						
I _{T(AV)}	75 A					
Туре	Modules - thyristor, standard					
Package	AAP Gen 7 (TO-240AA)					

MECHANICAL DESCRIPTION

The AAP Gen 7 (TO-240AA), new generation of AAP module, combines the excellent thermal performances obtained by the usage of exposed direct bonded copper substrate, with advanced compact simple package solution and simplified internal structure with minimized number of interfaces.

FEATURES

- · High voltage
- Industrial standard package

- · Low thermal resistance
- UL approved file E78996
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see <u>www.vishav.com/doc?99912</u>

BENEFITS

- Excellent thermal performances obtained by the usage of exposed direct bonded copper substrate
- Up to 1600 V
- · High surge capability
- · Easy mounting on heatsink

ELECTRICAL DESCRIPTION

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
I _{T(AV)}	85 °C	75				
I _{T(RMS)}		115	Α			
ı	50 Hz	1300	A			
ITSM	60 Hz	1360				
l²t	50 Hz	8.45	kA ² s			
1-1	60 Hz	7.68	KA-S			
I ² √t		84.5	kA²√s			
V _{RRM}	Range	400 to 1600	V			
T _{Stg}		-40 to +125	°C			
T _J		-40 to +125	°C			

Vishay Semiconductors

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM REPETITIVE PEAK OFF-STATE VOLTAGE, GATE OPEN CIRCUIT V	I _{RRM,} I _{DRM} AT 125 °C mA				
	04	400	500	400					
VS-VSK.71	08	800	900	800	15				
v3-v3N./ I	12	1200	1300	1200	13				
	16	1600	1700	1600					

ON-STATE CONDUCTION							
PARAMETER	SYMBOL		TEST CONDITIONS				
Maximum average on-state current	I _{T(AV)}	180° conduction	180° conduction, half sine wave, T _C = 85 °C				
Maximum continuous RMS on-state current		DC			115	Α	
Maximum continuous AMS on-state current	I _{T(RMS)}	T _C			80	°C	
		t = 10 ms	No voltage		1300		
Maximum peak, one-cycle non-repetitive		t = 8.3 ms	reapplied	Sinusoidal	1360	۸	
on-state current	I _{TSM}	t = 10 ms	100 % V _{RRM}	half wave, initial $T_J = T_J$ maximum	1093	Α	
		t = 8.3 ms	reapplied	. 0 0	1140		
		t = 10 ms	No voltage		8.45		
Maximum I ² t for fusing	I ² t	t = 8.3 ms	reapplied	Initial $T_J = T_J$ maximum	7.68	kA ² s	
	1-1	t = 10 ms	100 % V _{RRM}		5.97		
		t = 8.3 ms	reapplied		5.45		
Maximum l ² √t for fusing	I ² √t ⁽¹⁾		t = 0.1 ms to 10 ms, no voltage reapplied T _{,1} = T _{,1} maximum				
Markey or all a children hald allow	14 (2)	Low level (3)	T T '.		0.96		
Maximum value of threshold voltage	V _{T(TO)} (2)	High level (4)	$T_J = T_J \text{ maxir}$	num	1.08	V	
Maximum value of on-state	. (2)	Low level (3)	T T		3.28	0	
slope resistance	r _t ⁽²⁾	High level (4)	vel (4) T _J = T _J maximum		2.86	mΩ	
Maximum on-state voltage drop	V_{TM}	$I_{TM} = \pi \times I_{T(AV)}$	$I_{TM} = \pi \times I_{T(AV)}$ $T_J = 25 ^{\circ}C$			V	
Maximum non-repetitive rate of rise of turned on current	dl/dt	$T_J = 25$ °C, from $I_{TM} = \pi \times I_{T(AV)}$,	150	A/µs			
Maximum holding current	I _H	T _J = 25 °C, and resistive load,	250	mA			
Maximum latching current	ΙL	T _J = 25 °C, and	T _J = 25 °C, anode supply = 6 V, resistive load				

Notes

 $^{^{(1)}}$ I^2t for time $t_x = I^2 \sqrt{t} \ x \ \sqrt{t_x}$

⁽²⁾ Average power = $V_{T(TO)} \times I_{T(AV)} + r_t \times (I_{T(RMS)})^2$

^{(3) 16.7 %} x π x $I_{AV} < I < \pi$ x I_{AV}

 $^{^{(4)}~}I>\pi~x~I_{AV}$

Vishay Semiconductors

TRIGGERING					
PARAMETER	SYMBOL	TEST CO	NDITIONS	VALUES	UNITS
Maximum peak gate power	P_{GM}			12	W
Maximum average gate power	P _{G(AV)}			3.0	VV
Maximum peak gate current	I _{GM}			3.0	Α
Maximum peak negative gate voltage	- V _{GM}			10	
	V _{GT}	T _J = - 40 °C	Anode supply = 6 V resistive load	4.0	V
Maximum gate voltage required to trigger		T _J = 25 °C		2.5	
		T _J = 125 °C		1.7	
		T _J = - 40 °C		270	mA
Maximum gate current required to trigger	I _{GT}	T _J = 25 °C	Anode supply = 6 V resistive load	150	
		T _J = 125 °C	- resistive load	80	
Maximum gate voltage that will not trigger	V_{GD}	T _J = 125 °C, rated V _{DRM} applied		0.25	V
Maximum gate current that will not trigger	I _{GD}	T _J = 125 °C, rated V _{DRM} applied		6	mA

BLOCKING								
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS				
Maximum peak reverse and off-state leakage current at V _{RRM} , V _{DRM}	I _{RRM,} I _{DRM}	T _J = 125 °C, gate open circuit	15	mA				
Maximum RMS insulation voltage	V _{INS}	50 Hz	3000 (1 min) 3600 (1 s)	V				
Maximum critical rate of rise of off-state voltage	dV/dt	T_J = 125 °C, linear to 0.67 V_{DRM}	1000	V/µs				

THERMAL AND MECHANICAL SPECIFICATIONS								
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Junction operating and storage temperature range		T _J , T _{Stg}		-40 to +125	°C			
Maximum internal thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.29	°C/W			
Typical thermal resistance, case to heatsink per module		R _{thCS}	Mounting surface flat, smooth and greased	0.1	G/ VV			
Mounting torque ± 10 % to heatsink busbar			A mounting compound is recommended and the torque should be rechecked after a period of	4	- Nm			
			3 hours to allow for the spread of the compound.	3	INIII			
Approximate weight				75	g			
				2.7	oz.			
Case style			JEDEC®	AAP Gen 7	(TO-240AA)			

△R CONDUCTION PER JUNCTION											
DEVICES	5	SINE HALF	WAVE CO	NDUCTION	١	RE	CTANGUL	AR WAVE C	CONDUCTION	ON	UNITS
DEVICES	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
VSK.71	0.052	0.062	0.079	0.116	0.197	0.037	0.064	0.085	0.121	0.200	°C/W

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Vishay Semiconductors

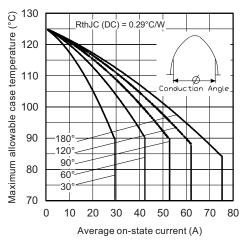


Fig. 1 - Current Ratings Characteristics

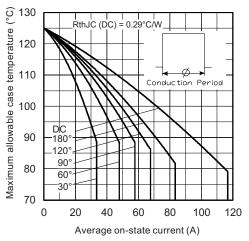


Fig. 2 - Current Ratings Characteristics

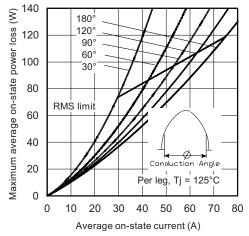


Fig. 3 - On-State Power Loss Characteristics

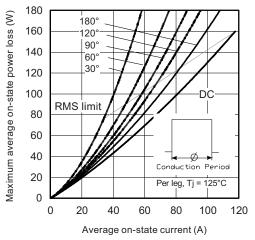
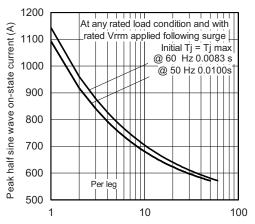



Fig. 4 - On-State Power Loss Characteristics

Number of equal amplitude half cycle current pulses (N)

Fig. 5 - Maximum Non-Repetitive Surge Current

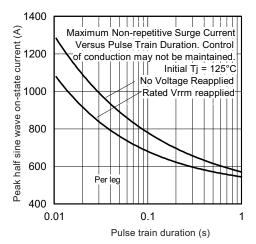


Fig. 6 - Maximum Non-Repetitive Surge Current

Vishay Semiconductors

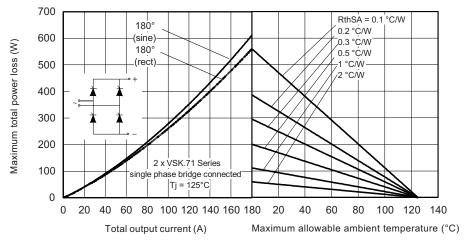


Fig. 7 - On-State Power Loss Characteristics

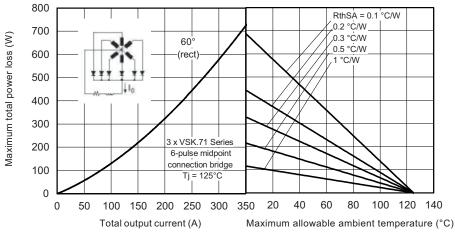


Fig. 8 - On-State Power Loss Characteristics

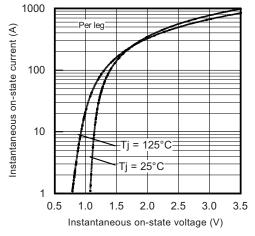


Fig. 9 - On-State Voltage Characteristics

Vishay Semiconductors

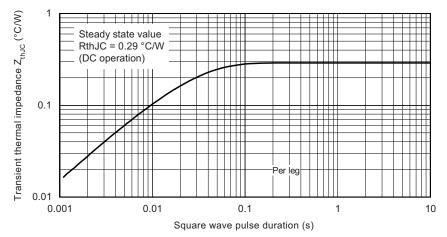


Fig. 10 - Thermal Impedance Z_{thJC} Characteristics

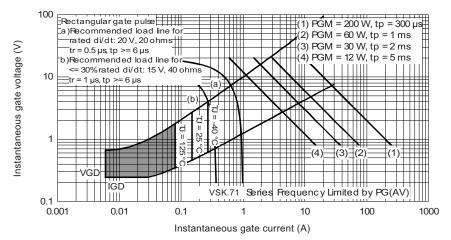
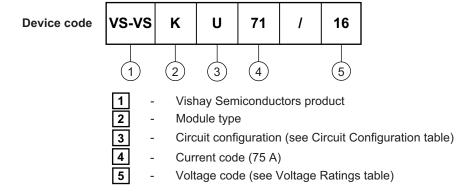



Fig. 11 - Gate Characteristics

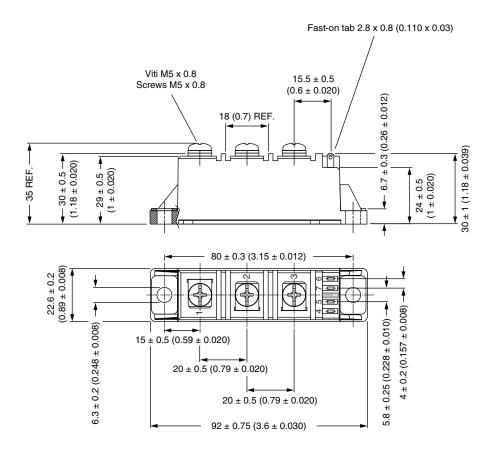
ORDERING INFORMATION TABLE

Note

• To order the optional hardware go to www.vishay.com/doc?95172

Vishay Semiconductors

CIRCUIT CONFIGURATION							
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING					
Two SCRs common cathodes	U	VSKU (1) 1 2 (2) (3) (3) (31) (4) (5) (7) (6)					
Two SCRs common anodes	V	VSKV (1) 1					


LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95368			

Vishay Semiconductors

ADD-A-PAK Generation VII - Thyristor

DIMENSIONS in millimeters (inches)

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for SCR Modules category:

Click to view products by Vishay manufacturer:

Other Similar products are found below:

DT430N22KOF T1851N60TOH T420N12TOF T470N16TOF T901N36TOF TD140N18KOF TD162N16KOF-A TD330N16AOF

T300N14TOF T3710N06TOF VT T390N16TOF T460N24TOF T590N16TOF TD180N16KOF VSKE236/16PBF T1081N60TOH

TT61N08KOF TD251N18KOF TD430N22KOF TT162N08KOF T2001N34TOF T901N35TOF T1080N02TOF T360N22TOF

TD160N16SOF T420N18TOF T420N14TOF TD305N16KOF T740N26TOF T360N24TOF T430N16TOF T300N16TOF TD520N22KOF

TT305N16KOF TT270N16KOF TD600N16KOF T740N22TOF T640N12TOF T470N12TOF T360N26TOF NTE5728

ETZ1100N16P70HPSA1 T430N18TOF TD700N22KOFHPSA1 T3441N52TOH T2851N48TOH TD820N16KOFHPSA1 MCD501-16IO2

MCD501-18IO2 SK 100 KQ 12