

Vishay Semiconductors

Standard Recovery Diodes, 400 A

PRIMARY CHARACTERISTICS					
I _{F(AV)} per module	400 A				
Туре	Modules - diode, high voltage				
Package	TO-244				
Circuit configuration	Two diodes common anode, two diodes common cathode				

FEATURES

- Standard rectifier
- · Popular series for rough service
- · Cathode and anode to base available
- UL approved file E222165
- · Designed and qualified for industrial level
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

TYPICAL APPLICATIONS

- Welders
- · Power supplies
- Motor controls
- · Battery chargers
- · General industrial current rectification

MAJOR RATINGS AND CHARACTERISTICS						
SYMBOL	CHARACTERISTICS	VALUES	UNITS			
1		400	A			
I _{F(AV)}	T _C	133	°C			
I _{F(RMS)}		628				
1	50 Hz	2500	А			
I _{FSM}	60 Hz	2620				
l ² t	50 Hz	31	– kA ² s			
1-1	60 Hz	28	KA-S			
l²√t		312	kA²√s			
V _{RRM}		600	V			
T _{Stg} , T _J		-40 to +175	°C			

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS									
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} MAXIMUM AT T _J = 175 °C mA					
VS-VSMD400.W60	60	600	700	12					

Revision: 05-Jan-18

Document Number: 93469

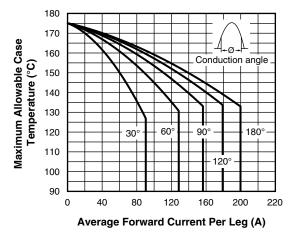
1 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishav.com/doc?91000

Vishay Semiconductors

FORWARD CONDUCTION						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	UNITS	
Maximum average forward current at case temperature per leg	I _{F(AV)}	180° condu	ction, half sine	wave, 133 °C	200	А
Maximum RMS forward current per leg	I _{F(RMS)}	DC at 137 °	C case tempera	ature	314	
		t = 10 ms	No voltage		2500	
Maximum peak, one-cycle forward,	1	t = 8.3 ms	reapplied		2620	А
non-repetitive surge current per leg	I _{FSM}	t = 10 ms	100 % V _{RRM}	Sinusoidal half wave, initial $T_J = T_J$ maximum	2100	- kA ² s
		t = 8.3 ms	reapplied		2200	
Maximum I ² t for fusing per leg	l ² t	t = 10 ms	No voltage		32	
		t = 8.3 ms	reapplied		29	
Maximum r ror rusing per leg		t = 10 ms	100 % V _{RRM}		22	
		t = 8.3 ms	reapplied		20	
Maximum I ² \sqrt{t} for fusing per leg	l²√t	t = 0.1 ms to 10 ms, no voltage reapplied			311	kA²√s
Low level value of threshold voltage per leg	V _{F(TO)1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum		0.73	V	
High level value of threshold voltage per leg	V _{F(TO)2}	$(I > \pi \times I_{F(AV)}), T_J = T_J maximum$			0.85	v
Low level value of forward slope resistance per leg	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J = T _J maximum			1.52	mΩ
High level value of forward slope resistance per leg	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J = T_J \text{ maximum}$ 1.3			1.36	11122
Maximum forward voltage drop per leg	V _{FM}	I _{FM} = 200 A	, T _J = 25 °C, t _p :	= 400 µs square wave	1.31	V

BLOCKING							
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS			
Maximum peak reverse leakage current per		T _J = 175 °C	12	mA			
leg	IRRM	T _J = 25 °C	200	μA			

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL					
PARAMETER	STIVIDOL	MIN.	TYP.	MAX.	UNITS	
Thermal resistance, per	eg p	-	-	0.10		
junction to case per mod	ule R _{thJC}	-	-	0.05	°C/W	
Thermal resistance, case to heatsink per module	R _{thCS}	-	0.10	-		
Maiabt		-	68	-	g	
Weight		-	2.4	-	oz.	
Mounting torque		30 (3.4)	-	40 (4.6)	line for the	
Mounting torque center hole		12 (1.4)	-	18 (2.1)	lbf ·in (N ·m)	
Terminal torque		30 (3.4)	-	40 (4.6)	((N * 11))	
Vertical pull		-	-	80	lbf ⋅ in	
2" lever pull		-	-	35	ni · Tai	
Case style			TO-244		•	


VICES SINE HALF WAVE CONDUCTION RECTANGULAR WAVE CONDUCTION							UNITS			
180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	UNITS
0.041	0.047	0.060	0.084	0.131	0.029	0.049	0.064	0.087	0.132	°C/W
	5 180°	SINE HALF 180° 120°	SINE HALF WAVE CO 180° 120° 90°	SINE HALF WAVE CONDUCTIO 180° 120° 90° 60°	SINE HALF WAVE CONDUCTION 180° 120° 90° 60° 30°	SINE HALF WAVE CONDUCTION RE 180° 120° 90° 60° 30° 180°	SINE HALF WAVE CONDUCTION RECTANGUL/ 180° 120° 90° 60° 30° 180° 120°	SINE HALF WAVE CONDUCTION RECTANGULAR WAVE (0) 180° 120° 90° 60° 30° 180° 120° 90°	SINE HALF WAVE CONDUCTION RECTANGULAR WAVE CONDUCTION 180° 120° 90° 60° 30° 180° 120° 90° 60°	SINE HALF WAVE CONDUCTION RECTANGULAR WAVE CONDUCTION 180° 120° 90° 60° 30° 180° 120° 90° 60° 30°

Note

• Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

Revision: 05-Jan-18 2 Document Number: 93469 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

Fig. 1 - Current Ratings Characteristics Per Leg

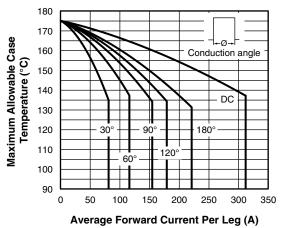
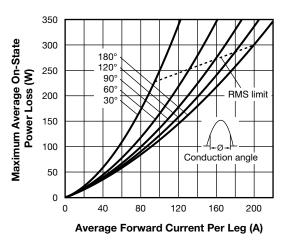
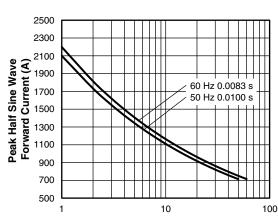
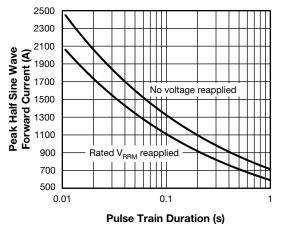
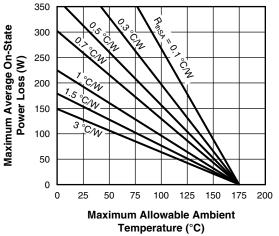





Fig. 2 - Current Ratings Characteristics Per Leg



Number of Equal Amplitude Half Cycle Current Pulses (N) Fig. 3 - Maximum Non-Repetitive Surge Current Per Leg

 Revision: 05-Jan-18
 3
 Document Number: 93469

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

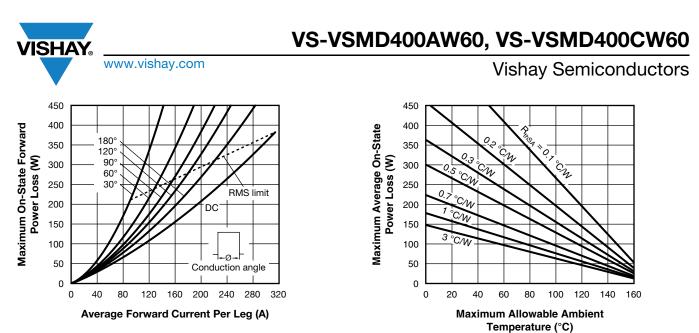


Fig. 6 - Forward Power Loss Characteristics

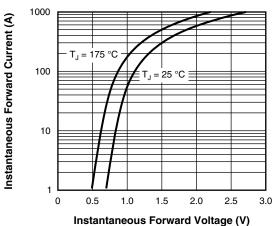


Fig. 7 - Forward Voltage Drop Characteristics Per Leg

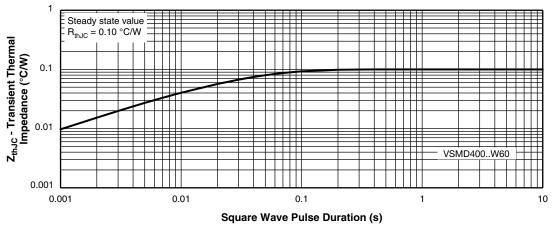


Fig. 8 - Thermal Impedance Z_{thJC} Characteristics Per Leg

 Revision: 05-Jan-18
 4
 Document Number: 93469

 For technical questions within your region: DiodesAmericas@vishay.com, DiodesAsia@vishay.com, DiodesEurope@vishay.com
 DiodesEurope@vishay.com

 THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Vishay Semiconductors

ORDERING INFORMATION TABLE

Device code	vs-vs	MD	400	С	W	60
		2	3	4	5	6
	1 - 2 - 3 - 4 -	MD Cur Circ	nay Sem = stand rent rati cuit conf = two d	lard reco ng (400 ïguratio	overy di = 400 A n:	ode
	5 -	Typ W =	= two d e of dev TO-244 age rati	vice: 4 not isc	olated	anode

CIRCUIT CONFIGURATION						
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING				
Two diodes common anode	A	Lug Lug terminal cathode 1 cathode 2				
Two diodes common cathode	С	Lug Lug terminal terminal anode 1 anode 2 Base common cathode				

LINKS TO RELATED DOCUMENTS					
Dimensions	www.vishay.com/doc?95021				

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Diodes - General Purpose, Power, Switching category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

MCL4151-TR3 MMBD3004S-13-F RD0306T-H RD0506LS-SB-1H RGP30G-E373 DSE010-TR-E BAQ333-TR BAQ335-TR BAQ33-GS18 BAS1602VH6327XT BAV17-TR BAV19-TR BAV301-TR BAW27-TAP HSC285TRF-E NSVBAV23CLT1G NTE525 1SS181-TP 1SS184-TP 1SS193,LF 1SS193-TP 1SS400CST2RA SBAV99LT3G SDAA13 LL4448-GS18 SHN2D02FUTW1T1G LS4150GS18 LS4151GS08 SMMBD7000LT3G FC903-TR-E 1N4449 1N4934-E3/73 1SS226-TP APT100DL60HJ RFUH20TB3S RGP30G-E354 RGP30M-E3/73 D291S45T MCL4151-TR BAS 16-02V H6327 BAS 21U E6327 BAS 28 E6327 BAS33-TAP BAS 70-02V H6327 BAV300-TR BAV303-TR3 BAW27-TR BAW56DWQ-7-F BAW56M3T5G BAW75-TAP