VTF (Standard)

Conformal, Single In-Line Thin Film Resistor, Through Hole Network (Standard)

Vishay Dale Thin Film resistor networks are designed to be used in analog circuits in conjunction with operational amplifiers. Engineers can use these circuits to achieve an infinite number of very low noise and high stability circuits for industrial, medical and scientific instrumentation.
This family of standard resistor networks will continually be expanded with new and innovative designs, and Vishay Dale Thin Film stocks most designs in house for off-the-shelf convenience. However, if you can not find the standard network you need, call applications engineering at (716) 283-4025, as we may be able to meet your requirements with a semicustom "match" for a quick delivery.
For standard networks with tighter specifications, or for custom networks, contact Applications Engineering at the above number. For a quick review of typical applications, request Vishay's guide to understanding and using thin film precision networks.

SCHEMATIC

$R_{1}=R_{2}$

Actual Size
$\mathrm{L}=$ total length $=0.320^{\prime \prime}(8.13 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.
Except PN 218 where seated height $=0.342^{\prime \prime}(8.69 \mathrm{~mm})$ max.
$R_{1}+R_{2}=10 K, 100 K, 1 M$
$\frac{R_{1}+R_{2}}{R_{2}}=10$

Actual Size

FEATURES

- Off-the-shelf delivery
- Wide variety of standards
- Small size (SIP)
- Standard designs - no NRE
- Low capacitance < 0.1 pF/PIN
- Flame resistant (UL 94 V-0 rating)
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

Note

* This datasheet provides information about parts that are RoHS-compliant and / or parts that are non RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details

TYPICAL PERFORMANCE

	ABSOLUTE	TRACKING
TCR	10	2
	ABSOLUTE	RATIO
TOL.	0.1	0.02

Complete electrical specifications at the end of schematics.

TWO EQUAL RESISTORS

ORDERING INFORMATION ($\mathrm{R}_{1}=$)	
1K: VTF209UF	50K: VTF214UF
2K: VTF210UF	100K: VTF215UF
5K: VTF211UF	200K: VTF216UF
10K: VTF212UF	500K: VTF217UF
20K: VTF213UF	1M: VTF218UF

Lead (Pb)-free option add " S " after part number, e.g: VTF209SUF

RATIO DIVIDER 10:1

ORDERING INFORMATION $\left(\mathrm{R}_{1}+\mathrm{R}_{2}=\right)$

$9 \mathrm{~K}+1 \mathrm{~K}=10 \mathrm{~K}:$ VTF280UF
$90 \mathrm{~K}+10 \mathrm{~K}=100 \mathrm{~K}:$ VTF193UF
$900 \mathrm{~K}+100 \mathrm{~K}=1 \mathrm{M}:$ VTF281UF

Lead (Pb)-free option add " S " after part number, e.g: VTF280SUF

[^0]$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.
Except PN 281 where seated height $=0.362^{\prime \prime}(9.19 \mathrm{~mm})$ max.

DIVIDER NETWORK 10:1

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
$100 \mathrm{~K}:$ VTF282UF
$1 \mathrm{M}:$ VTF283UF

$\mathrm{L}=$ total length $=0.320^{\prime \prime}(8.13 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.
Except PN 283 where seated height $=0.362$ " $(9.19 \mathrm{~mm})$ max.

$\frac{R_{2}}{R_{1}}=1$
$R_{3}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$$\overbrace{1}^{\mathrm{R}_{1}} \overbrace{10 \mathrm{~K}}^{\mathrm{R}_{1}}$
$L=0.520$ (13.21 mm), $H=0.280(7.11 \mathrm{~mm})$ max.

$\mathrm{R}_{1}=10 \mathrm{~K}$

FOUR EQUAL RESISTORS ONE COMMON

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
$10 \mathrm{~K}:$ VTF366UF
$100 \mathrm{~K}:$ VTF367UF

Lead (Pb)-free option add " S " after part number, e.g: VTF366SUF

DIVIDER NETWORK 2:1

ORDERING INFORMATION

VTF1087UF
Lead (Pb)-free option add " S " after part number, e.g: VTF1087SUF

DIVIDER NETWORK 2:1

$\mathrm{R}_{1}=10 \mathrm{~K}$	R_{1}	R_{2}	R_{3}		
$\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}=2$	$\xrightarrow[\substack{\text { Wha }}]{\substack{\text { dor }}}$	$\underset{\substack{\text { 20k }}}{\text { Wh }}$	$\xrightarrow{\text { W.667k }}$	T	
$\overline{R_{1}}=2$	10K	20K	6.667K	T\\|TII	
$\mathrm{R}_{3}=\frac{\mathrm{R}_{1} \times \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$	1	2	-	Actual Size	

ORDERING INFORMATION
VTF1088UF

Lead (Pb)-free option add " S " after part number, e.g: VTF1088SUF
$\mathrm{L}=0.520^{\prime \prime}$ (13.21 mm), $\mathrm{H}=0.280^{\prime \prime}$ (7.11 mm) max.
\qquad

$\mathrm{L}=0.520^{\prime \prime}$ (13.21 mm), $\mathrm{H}=0.280^{\prime \prime}$ (7.11 mm) max.

DIVIDER NETWORK 10:1

ORDERING INFORMATION

VTF1090UF
Lead (Pb)-free option add "S" after part number, e.g: VTF1090SUF

Note

- R_{2} TCR tracking $3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

	DIVIDER NETWORK 1:1
$\begin{aligned} & \mathrm{R}_{1}=5 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}, 1 \mathrm{M} \\ & \mathrm{R}_{1}=\mathrm{R}_{2} \end{aligned}$	ORDERING INFORMATION ($\mathrm{R}_{1}=$)
	5K: VTF225UF
NT	10K: VTF286UF
11 2 3 4 5 6	100K: VTF219UF
$\begin{aligned} & \mathrm{L}=\text { total length }=0.620^{\prime \prime}(15.75 \mathrm{~mm}) \max . \\ & \mathrm{H}=\text { seated height }=0.280^{\prime \prime}(7.11 \mathrm{~mm}) \text { max. } \end{aligned}$	1M: VTF287UF
Except PN 287 seated height $=0.362$ " (9.19 mm) max.	Lead (Pb)-free option add "S" after part number, e.g: VTF225SUF

$\mathrm{R}_{1}=10 \mathrm{~K}, 100 \mathrm{~K}$

$\mathrm{L}=$ total length $=0.620^{\prime \prime}(15.75 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

DIVIDER NETWORK 2:1

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
10K: VTF1009UF
$100 \mathrm{~K}:$ VTF1010UF

Lead (Pb)-free option add " S " after part number, e.g: VTF1009SUF

$\mathrm{L}=$ total length $=0.620^{\prime \prime}(15.75 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

DIVIDER NETWORK 5:1

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
10K: VTF1007UF
100K: VTF1008UF

Lead (Pb)-free option add "S" after part number, e.g: VTF1007SUF

DIVIDER NETWORK 10:1

ORDERING INFORMATION ($\mathrm{R}_{1}=$)

10K: VTF220UF
Lead (Pb)-free option add "S" after part number, e.g: VTF220SUF
$\mathrm{L}=$ total length $=0.620^{\prime \prime}(15.75 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

DIVIDER NETWORK 10:1
ORDERING INFORMATION $\left(R_{1}=\right)$

$10 \mathrm{~K}: ~ V T F 328 U F$
$100 \mathrm{~K}: ~ V T F 284 U F$
$1 \mathrm{M}:$ VTF285UF

Lead (Pb)-free option add " S " after part number, e.g: VTF328SUF
$R_{1}=10 \mathrm{~K}, 50 \mathrm{~K}, 200 \mathrm{~K}, 1 \mathrm{M}$

$\mathrm{L}=$ total length $=0.620$ " $(15.75 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.
DIVIDER NETWORK 20:1

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
$10 \mathrm{~K}:$ VTF1073UF
$50 \mathrm{~K}:$ VTF1074UF
$200 \mathrm{~K}:$ VTF1107UF
$1 \mathrm{M}:$ VTF1108UF

Lead (Pb)-free option add " S " after part number, e.g: VTF1073SUF

DIVIDER NETWORK 100:1

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
$1 \mathrm{M}:$ VTF1109UF

Lead (Pb)-free option add " S " after part number, e.g: VTF1109SUF

SIX RESISTOR NETWORK

Common mode
Division ratio 250, 100, 50
$\mathrm{R}_{1}=\mathrm{R}_{3}=1 \mathrm{M}$
$\mathrm{R}_{2}=4 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}$
$\mathrm{R}_{4}=3.984 \mathrm{~K}, 9.901 \mathrm{~K}, 19.608 \mathrm{~K}$
$\mathrm{R}_{5}=900 \mathrm{~K}, 950 \mathrm{~K}, 975 \mathrm{~K}$
$\mathrm{R}_{6}=100 \mathrm{~K}, 50 \mathrm{~K}, 25 \mathrm{~K}$

(Designed for unity gain/high common mode voltage rejection differential amplifier)

ORDERING INFORMATION $\left(\mathrm{R}_{1} / \mathrm{R}_{2}=\right)$

Devision Ratio = 250: VTF442UF
100: VTF443UF
$50:$ VTF444UF

Lead (Pb)-free option add " S " after part number, e.g: VTF442SUF
$\mathrm{L}=$ total length $=0.720^{\prime \prime}(18.29 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.360^{\prime \prime}(9.14 \mathrm{~mm})$ max.
Maximum voltage to pins 3 and 7 is 300 V

FOUR EQUAL RESISTORS ISOLATED

$R_{1}=1 \mathrm{~K}, 10 \mathrm{~K}, 100 \mathrm{~K}$

Absolute tolerance = 0.1 \%
Ratio tolerance $=0.1 \%$
$\mathrm{L}=$ total length $=0.820$ " $(20.83 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

Lead (Pb)-free option add " S " after part number, e.g: VTF329SUF

FOUR EQUAL RESISTORS ISOLATED
FOUR EQUAL RESISTORS ISOLATED
ORDERING INFORMATION ($\mathrm{R}_{1}=$)

ORDERING INFORMATION $\left(\mathrm{R}_{1}=\right)$
$1 \mathrm{~K}:$ VTF1005UF
$10 \mathrm{~K}:$ VTF1006UF
$100 \mathrm{~K}:$ VTF1137UF

Lead (Pb)-free option add "S" after part number, e.g: VTF1005SUF

VTF (Standard)

EIGHT EQUAL RESISTORS ONE COMMON

ORDERING INFORMATION $\left(R_{1}=\right)$
$10 \mathrm{~K}:$ VTF368UF
$100 \mathrm{~K}:$ VTF369UF

Lead (Pb)-free option add " S " after part number, e.g: VTF368SUF
$\mathrm{L}=$ total length $=0.920$ " $(23.37 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

EIGHT RESISTOR NETWORK
(Designed for instrument amplifier with shield driver)

ORDERING INFORMATION
VTF272UF

Lead (Pb)-free option add " S " after part number, e.g: VTF272SUF
$\mathrm{L}=$ total length $=0.920$ " $(23.37 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

$\mathrm{L}=$ total length $=1.020$ " $(25.91 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

EIGHT BIT R/2R LADDER NETWORK

ORDERING INFORMATION $(R=)$
$(\pm 1 / 2 \mathrm{LSB})$
$1 \mathrm{~K}:$ VTF1072UF
$10 \mathrm{~K}:$ VTF267UF

Lead (Pb)-free option add " S " after part number, e.g: VTF1072SUF

RESISTANCE DOUBLER

ORDERING INFORMATION
VTF1011UF

Lead (Pb)-free option add " S " after part number, e.g: VTF1011SUF

Absolute tolerance $= \pm 0.1 \%$

Ratio tolerance $= \pm 0.1 \%$
TCR tracking $= \pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$\mathrm{L}=$ total length $=1.02^{\prime \prime}(25.91 \mathrm{~mm})$ max.
$\mathrm{H}=$ seated height $=0.280^{\prime \prime}(7.11 \mathrm{~mm})$ max.

STANDARD ELECTRICAL SPECIFICATIONS

TEST	SPECIFICATIONS	CONDITIONS
Material	Passivated nichrome	-
Pin/Lead Number	3 to 10	-
Resistance Range	100Ω to $2 \mathrm{M} \Omega$ total	-
TCR: Absolute	$\pm 10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}{ }^{(1)}$	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
TCR: Tracking	$\pm 2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}{ }^{(1)}$	$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Tolerance: Absolute	± 0.1 \%	$+25^{\circ} \mathrm{C}$
Tolerance: Ratio	± 0.02 \%	$+25^{\circ} \mathrm{C}$
Power Rating: Resistor	100 mW	-
Power Rating: Package	500 mW	-
Stability: Absolute	$\Delta R \pm 0.05 \%$	2000 h at $+70^{\circ} \mathrm{C}$
Stability: Ratio	$\Delta R \pm 0.015$ \%	2000 h at $+70^{\circ} \mathrm{C}$
Voltage Coefficient	$\pm 0.01 \mathrm{ppm} / \mathrm{V}$	-
Working Voltage	100 V	-
Operating Temperature Range	$0^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$	-
Storage Temperature Range	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	-
Noise	$<-35 \mathrm{~dB}$	-
Thermal EMF	$<0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	-
Shelf Life Stability: Absolute	$\Delta R \pm 0.01 \%$	1 year at $+25^{\circ} \mathrm{C}$
Shelf Life Stability: Ratio	$\Delta R \pm 0.002$ \%	1 year at $+25^{\circ} \mathrm{C}$

Note

(1) TCR over $-55^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C} \pm 20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ absolute, $\pm 3 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ tracking

DIMENSIONS AND IMPRINTING in inches and millimeters

		DIMENSION	INCHES	MILLIMETERS
		A	0.125 min .	3.17
		B	0.010 min .	0.25
		C	0.100	2.54 typ.
		D	0.020 typ.	0.48 ± 0.15
		E	0.100 max.	2.54
		F	0.010 typ.	0.25

Note

- "L" and "H" (length and height) dimensions for each model are found alongside the schematic drawing

MECHANICAL SPECIFICATIONS	
Resistive Element	Passivated nichrome
Substrate Material	Alumina
Body	Epoxy coated
Terminals	Copper alloy
Tin / Lead Option	Sn60 - Sn63
Lead (Pb)-free Option	Sn96.5, Ag3.0, Cu0.5
Tin / Lead and Lead (Pb)-free Finish	Hot solder dip

VTF (Standard)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resistor Networks \& Arrays category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :
M8340105K1002FGD03 M8340105K3301JCD03 M8340106M2002GCD03 M8340107K1471FGD03 M8340107K2002GCD03
M8340107K2261FGD03 M8340107M1501GGD03 M8340108K1001FCD03 M8340108K3240FGD03 M8340108K4991FGD03
M8340108K6192FGD03 M8340109K2872FCD03 M8340109MA010GHD03 EXB-24N121JX EXB-24N330JX EXB-24N470JX
744C083101JTR EXB-U14360JX EXB-U18390JX 744C083270JTR 745C102472JP 767161104G 770101223 ACAS06S0830339P100
ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 8B472TR4 268-15K
ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-U14470JX EXB-U18330JX 266-10K
M8340102K1051FBD04 M8340105M1001JCD03 M8340106K4701GGD03 M8340107K1004GGD03 M8340108K1000GGD03
M8340108K1202GGD03 M8340108K3901GGD03 M8340108K4992FGD03 M8340108K5111FGD03 M8340109K2202GCD03
RKC8BD104J DFNA100-1TS 745X101473JP RMKD408-10KBW

[^0]: $\mathrm{L}=$ total length $=0.320^{\prime \prime}(8.13 \mathrm{~mm})$ max.

