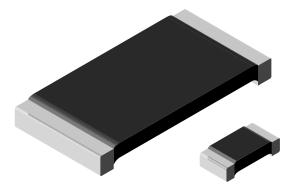


Vishay Dale

e:


HALOGEN

GREEN

(5-2008)

RoHS

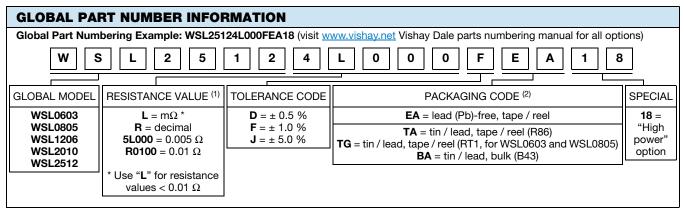
Power Metal Strip[®] Resistors, High Power (2 x Standard WSL), Low Value (Down to 0.0005 Ω), Surface-Mount

LINKS TO ADDITIONAL RESOURCES

30		
3D Models	Design Tools	Videos

FEATURES

- All welded construction of the Power Metal Strip[®] resistors are ideal for all types of current sensing, voltage division and pulse applications
- Proprietary processing technique produces extremely low resistance values (down to 0.0005 Ω)
- Sulfur resistance by construction that is unaffected by high sulfur environments
- Very low inductance 0.5 nH to 5 nH
- Low thermal EMF (< 3 μV/°C)
- AEC-Q200 qualified ⁽¹⁾
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>


Notes

- This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details
- Follow link to Overview of Automotive Grade Products for more details: www.vishay.com/doc?49924
- ⁽¹⁾ Flame retardance test may not be applicable to some resistor technologies

STANDARD ELECTRICAL SPECIFICATIONS							
GLOBAL SIZE	SIZE	POWER RATING P _{70 °C} W	RESISTANCE V	WEIGHT (typical)			
			TOL. ± 0.5 %	TOL. ± 1.0 %	g/1000 pieces		
WSL060318	0603	0.20	0.01 to 0.1	0.01 to 0.1	1.9		
WSL080518	0805	0.25	0.005 to 0.2	0.005 to 0.2	4.8		
WSL120618	1206	0.5	0.005 to 0.2	0.0005 to 0.2	16.2		
WSL201018	2010	1.0	0.004 to 0.5	0.001 to 0.5	38.9		
WSL251218	2512	2.0	0.003 to 0.04	0.0005 to 0.04	63.6		

Notes

- Part marking: value; tolerance: due to resistor size limitations some resistors will be marked with only the resistance value
- ⁽¹⁾ WSL1206...18 0.0005 Ω to 0.00099 Ω is only available with 2 % tolerance (G tolerance code)

Notes

⁽¹⁾ WSL marking (<u>www.vishay.com/doc?30327</u>); WSL decade values (<u>www.vishay.com/doc?30117</u>)

(2) Packaging code: EB (lead (Pb)-free) and TB (tin / lead) are non-standard packaging codes that designate 1000 piece reel quantities. These non-standard packaging codes are identical to our standard EA (lead (Pb)-free) and TA (tin / lead), except that they have a package quantity of 1000 pieces

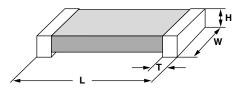
Revision: 24-Mar-2020

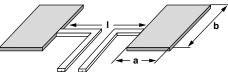
Vishay Dale

TECHNICAL SPECIFICATIONS

		RESISTOR CHARACTERISTICS					
PARAMETER	UNIT	WSL060318 ⁽¹⁾	WSL0805 18	WSL1206 18	WSL2010 18	WSL2512 18	WSL2816 18
		\pm 75 for 50 m Ω to 100 m Ω	\pm 75 for 7 m Ω to 500 m Ω				
Component temperature coefficient (including terminal) ⁽²⁾ TCR measured from -55 °C to +155 °C		\pm 110 for 10 m Ω to 49 m Ω	\pm 110 for 5 m Ω to 6.9 m Ω				
	ppm/°C	opm/°C - ± 15	± 150 f	0 for 3 m Ω to 4.9 m Ω			
		-	\pm 275 for 1 m Ω to 2.9 m Ω	2.9 mΩ			
		- \pm 400 for 0.5 m Ω to 0.99					
Element TCR ⁽³⁾	ppm/°C	< 20					
Operating temperature range	°C	-65 to +170					
Maximum working voltage (4)	V	$(P \times R)^{1/2}$					

Notes


(1) Consult factory for detailed TCR performance across temperature range associated with PCN-DR-00003-2020 for WSL0603...18. TCR performance is improved for +25 °C to +155 °C


⁽²⁾ Component TCR - total TCR that includes the TCR effects of the resistor element and the copper terminal

(3) Element TCR - only applies to the alloy used for the resistor element; refer to item 1 in the construction illustration on the following page

⁽⁴⁾ Maximum working voltage - the WSL is not voltage sensitive, but is limited by power / energy dissipation and is also not ESD sensitive

DIMENSIONS in inches (millimeters)

Notes

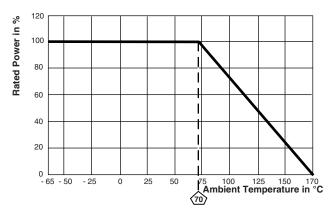
3D models available: <u>www.vishay.com/doc?30307</u>

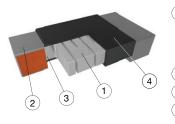
Surface mount solder profile recommendations: <u>www.vishay.com/doc?31052</u>

MODEL	RESISTANCE	DIMENSIONS				SOLDER PAD DIMENSIONS		
WODEL	RANGE (Ω)	L	w	н	Т	а	b	I
WSL060318 ⁽¹⁾	0.01 to 0.1	0.060 ± 0.010 (1.52 ± 0.254)	0.030 ± 0.010 (0.76 ± 0.254)	0.016 ± 0.005 (0.406 ± 0.127)	$\begin{array}{c} 0.015 \pm 0.005 \\ (0.381 \pm 0.127) \end{array}$	0.040 (1.01)	0.040 (1.01)	0.020 (0.50)
WSL080518	0.005 to 0.2	0.080 ± 0.010 (2.03 ± 0.254)	0.050 ± 0.010 (1.27 ± 0.254)	$\begin{array}{c} 0.013 \pm 0.010 \\ (0.330 \pm 0.254) \end{array}$	$\begin{array}{c} 0.015 \pm 0.005 \\ (0.381 \pm 0.127) \end{array}$	0.040 (1.02)	0.050 (1.27)	0.020 (0.50)
WSL120618	0.0005 to 0.00099	0.126 ± 0.010 (3.20 ± 0.254)	0.063 ± 0.010 (1.60 ± 0.254)	0.025 ± 0.010 (0.635 ± 0.254)	0.041 ± 0.010 (1.04 ± 0.254)	0.089 (2.26)	0.076 (1.93)	0.023 (0.58)
	0.001 to 0.0019					0.086 (2.18)	0.076 (1.93)	0.029 (0.74)
	0.002 to 0.0059				$\begin{array}{c} 0.025 \pm 0.010 \\ (0.635 \pm 0.254) \end{array}$	0.070 (1.78)	0.076 (1.93)	0.061 (1.55)
	0.006 to 0.20				$\begin{array}{c} 0.020 \pm 0.010 \\ (0.508 \pm 0.254) \end{array}$	0.065 (1.65)	0.076 (1.93)	0.071 (1.80)
WSL201018	0.001 to 0.0069	0.200 ± 0.010			0.058 ± 0.010 (1.47 ± 0.254)	0.093 (2.36)	0.120 (3.05)	0.055 (1.40)
	0.007 to 0.5	(5.08 ± 0.254)			$\begin{array}{c} 0.020 \pm 0.010 \\ (0.508 \pm 0.254) \end{array}$	0.055 (1.40)	0.120 (3.05)	0.130 (3.30)
WSL251218	0.0005 to 0.00099	$\begin{array}{c} 0.250 \pm 0.010 \\ (6.35 \pm 0.254) \end{array} \begin{array}{c} 0.125 \pm 0.010 \\ (3.18 \pm 0.254) \end{array}$	0.125 ± 0.010	0.025 ± 0.010	0.107 ± 0.010 (2.72 ± 0.254)	0.120 (3.05)	0.145	0.050 (1.27)
	0.001 to 0.0049				0.087 ± 0.010 (2.21 ± 0.254)			
	0.005 to 0.0069		(0.635 ± 0.254)	0.047 ± 0.010 (1.19 ± 0.254)	0.083 (2.11)	(3.68)	0.125 (3.18)	
	0.007 to 0.04				$\begin{array}{c} 0.030 \pm 0.010 \\ (0.762 \pm 0.254) \end{array}$	0.065 (1.65)		0.160 (4.06)

Note

(1) PCN-DR-00003-2020 changed terminal height for WSL0603...18 from 0.013" ± 0.005" for clad construction to 0.016" ± 0.005" for welded construction

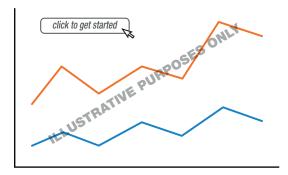

WSL...18 High Power


om

Vishay Dale

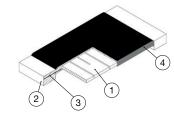
DERATING

WELDED CONSTRUCTION 2512, 2010, 1206, 0603



1 Resistive element: solid metal nickel-chrome or manganese-copper alloy resistive element with low TCR (< 20 ppm/°C)

2 Plated terminal


- 3 Terminal / element weld
- 4 Silicone coating with ink print

PULSE CAPABILITY

www.vishay.com/resistors/power-metal-strip-calculator

CLAD CONSTRUCTION 0805

(1) Resistive element: Ni-Cr

(2) Terminal: solid copper, 100 % Sn (100 μ["] min.) with 100 % Ni (20 μ["] min.) under layer finish

(3) Terminal to element weld

(4) High temperature encapsulant: "siliconized polyester" coating material

PERFORMANCE						
TEST	TEST LIMITS					
Thermal shock	-55 °C to +150 °C, 1000 cycles, 15 min at each extreme	\pm 0.5 % + 0.0005 Ω				
Short time overload	Refer to link for short time overload performance and pulse capability; <u>www.vishay.com/resistors/power-metal-strip-calculator/</u>	\pm 0.5 % + 0.0005 Ω				
Low temperature storage	-65 °C for 24 h	\pm 0.5 % + 0.0005 Ω				
High temperature exposure	1000 h at + 170 °C	\pm 1.0 % + 0.0005 Ω				
Bias humidity	+85 °C, 85 % RH, 10 % bias, 1000 h	\pm 0.5 % + 0.0005 Ω				
Mechanical shock	100 g's for 6 ms, 5 pulses	\pm 0.5 % + 0.0005 Ω				
Vibration	Frequency varied 10 Hz to 2000 Hz in 1 min, 3 directions, 12 h	\pm 0.5 % + 0.0005 Ω				
Load life	1000 h at rated power, + 70 °C, 1.5 h "ON", 0.5 h "OFF"	\pm 1.0 % + 0.0005 Ω				
Resistance to solder heat	+260 °C solder, 10 s to 12 s dwell, 25 mm/s emergence	\pm 0.5 % + 0.0005 Ω				
Moisture resistance	MIL-STD-202, method 106, 0 % power, 7a and 7b not required	$\pm \ 0.5 \ \% \ + \ 0.0005 \ \Omega$				

PACKAGING ⁽¹⁾						
MODEL	REEL					
	TAPE WIDTH	DIAMETER	PIECES/REEL	CODE		
WSL060318	8 mm / punched paper	178 mm / 7"	5000	EA		
WSL080518	8 mm / punched paper	178 mm / 7"	5000	EA		
WSL120618	8 mm / embossed plastic	178 mm / 7"	4000	EA		
WSL201018	12 mm / embossed plastic	178 mm / 7"	4000	EA		
WSL251218	12 mm / embossed plastic	178 mm / 7"	2000	EA		

Notes

• Embossed carrier tape per EIA-481

⁽¹⁾ Additional packaging details at <u>www.vishay.com/doc?20051</u>

Revision: 24-Mar-2020

3

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Current Sense Resistors - SMD category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :

5112 65709-330JE PF2512FKF7W0R007L PR2512FKF7W0R003L PR2512FKF7W0R005L RCWL0603R500JNEA ERJ-3BQF1R1V ERJ-L14UJ42MU 2-2176088-5 PF2512FKF7W0R006L PF2512FKF7W0R033L 2-2176089-4 CD2015FC-0.10-1% PR2512FKF7W0R004L CGSSL1R01J CGSSL1R047J RC1005F124CS RCWE2512R110FKEA RCWL0805R330JNEA RL73H3AR47FTE RL73K3AR56JTDF RL7520WT-R001-F RL7520WT-R009-G RL7520WT-R020-F RLP73N1ER43JTD TL3AR01FTDG TLR3A20DR0005FTDG LRC-LR2512LF-01-R820J ERJ-3BQF4R3V ERJ-L14UF68MU TLR3A20DR001FTDG TLR3A30ER0005FTDG WR06X104JGLJ RLP73K1ER82JTD TL2BR01F TLR3A20DR01FTDG WSR3R0600FEA32 ERJ-14BQF1R6U ERJ-14BQJR30U SP1220RJT SP1R12J ERJ-14BQF6R2U RL7520WT-R039-G PF1206FRF7W0R02L RL7520WT-R002-F RL7520WT-R047-F RLP73N2BR068FTDF RL7520WT-R005-F RCWE2512R220FKEA RCWE120625L0FMEA