Power Metal Strip ${ }^{\circledR}$ Resistors, Very High Power (to 3 W), Low Value (Down to 0.0005Ω), Surface-Mount

LINKS TO ADDITIONAL RESOURCES

Notes

- This datasheet provides information about parts that are RoHS-compliant and / or parts that are non-RoHS-compliant. For example, parts with lead (Pb) terminations are not RoHS-compliant. Please see the information / tables in this datasheet for details
- Follow link to Overview of Automotive Grade Products for more details: www.vishay.com/doc?49924
(1) Flame retardance test may not be applicable to some resistor technologies

STANDARD ELECTRICAL SPECIFICATIONS

GLOBAL MODEL	SIZE	POWER RATING $P_{70}{ }^{\circ} \mathrm{C}$ W	RESISTANCE VALUE RANGE ${ }^{(1)}$ Ω		WEIGHT (typical) g/1000 pieces
			TOL. ± 0.5 \%	TOL. ± 1.0 \%	
WSLP0603	0603	0.4	0.015 to 0.1	0.01 to 0.1	1.9
WSLP0805	0805	0.5	0.005 to 0.1	0.005 to 0.1	4.8
WSLP1206	1206	1.0	0.005 to 0.05	0.0005 to 0.05	16.2
WSLP2010	2010	2.0	0.004 to 0.03	0.001 to 0.03	38.9
WSLP2512	2512	3.0	0.003 to 0.01	0.0005 to 0.01	63.6

Notes

- Part marking: value; tolerance: due to resistor size limitations some resistors will be marked with only the resistance value
(1) WSLP1206 0.0005Ω to 0.00099Ω is only available with 2% tolerance (G tolerance code)

Notes

(1) WSL marking (www.vishay.com/doc?30327); WSL decade values (www.vishay.com/doc?30117)
(2) Packaging code: EB (lead (Pb)-free) and TB (tin / lead) are non-standard packaging codes that designate 1000 piece reel quantities. These non-standard packaging codes are identical to our standard EA (lead (Pb)-free) and TA (tin / lead), except that they have a package quantity of 1000 pieces
(3) Follow link for customization capabilities: www.vishay.com/doc?48163

PARAMETER	UNIT	RESISTOR CHARACTERISTICS				
		WSLP0603 ${ }^{(1)}$	WSLP0805	WSLP1206	WSLP2010	WSLP2512
Component temperature coefficient (including terminal) ${ }^{(2)}$ TCR measured from $-55^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$	ppm/ ${ }^{\circ} \mathrm{C}$	± 75 for $50 \mathrm{~m} \Omega$ to $100 \mathrm{~m} \Omega$	± 75 for $7 \mathrm{~m} \Omega$ to $500 \mathrm{~m} \Omega$			
		± 110 for $10 \mathrm{~m} \Omega$ to $49 \mathrm{~m} \Omega$	± 110 for $5 \mathrm{~m} \Omega$ to $6.9 \mathrm{~m} \Omega$			
		-	± 150 for $3 \mathrm{~m} \Omega$ to $4.9 \mathrm{~m} \Omega$			
		-	± 275 for $1 \mathrm{~m} \Omega$ to $2.9 \mathrm{~m} \Omega$			
		-	± 400 for $0.5 \mathrm{~m} \Omega$ to $0.99 \mathrm{~m} \Omega$			
Element TCR ${ }^{(3)}$	ppm $/{ }^{\circ} \mathrm{C}$	<20				
Operating temperature range	${ }^{\circ} \mathrm{C}$	-65 to +170				
Maximum working voltage ${ }^{(4)}$	V	$(P \times R)^{1 / 2}$				

Notes

${ }^{(1)}$ Consult factory for detailed TCR performance across temperature range associated with PCN-DR-00003-2020 for WSLP0603. TCR performance is improved for $+25^{\circ} \mathrm{C}$ to $+155^{\circ} \mathrm{C}$
${ }^{(2)}$ Component TCR - total TCR that includes the TCR effects of the resistor element and the copper terminal
(3) Element TCR - only applies to the alloy used for the resistor element; refer to item 1 in the construction illustration on the following page
(4) Maximum working voltage - the WSL is not voltage sensitive, but is limited by power / energy dissipation and is also not ESD sensitive

DIMENSIONS

Notes

- 3D models available. WSLP models: www.vishay.com/doc?30313
- Surface-mount solder profile recommendations: www.vishay.com/doc?31052

MODEL	RESISTANCE RANGE (Ω)	DIMENSIONS in inches (millimeters)				SOLDER PAD DIMENSIONS in inches (millimeters)		
		L	W	H	T	a	b	,
WSLP0603 ${ }^{(1)}$	0.01 to 0.1	$\begin{aligned} & 0.060 \pm 0.010 \\ & (1.52 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.030 \pm 0.010 \\ & (0.76 \pm 0.254) \end{aligned}$	$\begin{gathered} 0.016 \pm 0.005 \\ (0.406 \pm 0.127) \\ \hline \end{gathered}$	$\begin{gathered} 0.015 \pm 0.010 \\ (0.381 \pm 0.254) \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.040 \\ & (1.02) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.040 \\ & (1.02) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.020 \\ & (0.50) \\ & \hline \end{aligned}$
WSLP0805	0.005 to 0.1	$\begin{aligned} & 0.080 \pm 0.010 \\ & (2.03 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.050 \pm 0.010 \\ & (1.27 \pm 0.254) \end{aligned}$	$\begin{gathered} 0.013 \pm 0.010 \\ (0.330 \pm 0.254) \end{gathered}$	$\begin{gathered} 0.015 \pm 0.010 \\ (0.381 \pm 0.254) \end{gathered}$	$\begin{aligned} & \hline 0.040 \\ & (1.02) \end{aligned}$	$\begin{aligned} & 0.050 \\ & (1.27) \end{aligned}$	$\begin{aligned} & \hline 0.020 \\ & (0.50) \end{aligned}$
WSLP1206	0.0005 to 0.00099	$\begin{aligned} & 0.126 \pm 0.010 \\ & (3.20 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.063 \pm 0.010 \\ & (1.60 \pm 0.254) \end{aligned}$	$\begin{gathered} 0.025 \pm 0.010 \\ (0.635 \pm 0.254) \end{gathered}$	$\begin{aligned} & 0.041 \pm 0.010 \\ & (1.04 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.089 \\ & (2.26) \end{aligned}$	$\begin{aligned} & 0.076 \\ & (1.93) \end{aligned}$	$\begin{aligned} & \hline 0.023 \\ & (0.58) \end{aligned}$
	0.001 to 0.0019					$\begin{aligned} & \hline 0.086 \\ & (2.18) \end{aligned}$	$\begin{aligned} & 0.076 \\ & (1.93) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.029 \\ & (0.74) \\ & \hline \end{aligned}$
	0.002 to 0.0059				$\begin{aligned} & 0.025 \pm 0.010 \\ & (0.635 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.070 \\ & (1.78) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.076 \\ & (1.93) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.061 \\ & (1.55) \end{aligned}$
	0.006 to 0.050				$\begin{gathered} 0.020 \pm 0.010 \\ (0.508 \pm 0.254) \end{gathered}$	$\begin{aligned} & 0.065 \\ & (1.65) \end{aligned}$	$\begin{aligned} & 0.076 \\ & (1.93) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.071 \\ & (1.80) \end{aligned}$
WSLP2010	0.001 to 0.0069	$\begin{aligned} & 0.200 \pm 0.010 \\ & (5.08 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.100 \pm 0.010 \\ & (2.54 \pm 0.254) \end{aligned}$	$\begin{gathered} 0.025 \pm 0.010 \\ (0.635 \pm 0.254) \end{gathered}$	$\begin{aligned} & 0.058 \pm 0.010 \\ & (1.47 \pm 0.254) \end{aligned}$	$\begin{aligned} & \hline 0.093 \\ & (2.36) \end{aligned}$	$\begin{aligned} & 0.120 \\ & (3.05) \end{aligned}$	$\begin{aligned} & 0.055 \\ & (1.40) \end{aligned}$
	0.007 to 0.03				$\begin{gathered} 0.020 \pm 0.010 \\ (0.508 \pm 0.254) \end{gathered}$	$\begin{aligned} & \hline 0.055 \\ & (1.40) \end{aligned}$		$\begin{aligned} & 0.130 \\ & (3.30) \end{aligned}$
WSLP2512	0.0005 to 0.00099	$\begin{aligned} & 0.250 \pm 0.010 \\ & (6.35 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.125 \pm 0.010 \\ & (3.18 \pm 0.254) \end{aligned}$	$\left(\begin{array}{c} 0.025 \pm 0.010 \\ (0.635 \pm 0.254) \end{array}\right.$	$\begin{aligned} & 0.107 \pm 0.010 \\ & (2.72 \pm 0.254) \end{aligned}$	$\begin{aligned} & 0.120 \\ & (3.05) \end{aligned}$	$\begin{aligned} & 0.145 \\ & (3.68) \end{aligned}$	$\begin{aligned} & 0.050 \\ & (1.27) \end{aligned}$
	0.001 to 0.0049				$\begin{aligned} & 0.087 \pm 0.010 \\ & (2.21 \pm 0.254) \end{aligned}$			
	0.005 to 0.0069				$\begin{aligned} & 0.047 \pm 0.010 \\ & (1.19 \pm 0.254) \end{aligned}$	$\begin{aligned} & \hline 0.083 \\ & (2.11) \end{aligned}$		$\begin{aligned} & \hline 0.125 \\ & (3.18) \end{aligned}$
	0.007 to 0.01				$\begin{gathered} 0.030 \pm 0.010 \\ (0.762 \pm 0.254) \end{gathered}$	$\begin{aligned} & 0.065 \\ & (1.65) \end{aligned}$		$\begin{aligned} & \hline 0.160 \\ & (4.06) \end{aligned}$

Note

(1) PCN-DR-00003-2020 changed terminal height for WSLP0603 from $0.013^{\prime \prime} \pm 0.005^{\prime \prime}$ for clad construction to $0.016 " \pm 0.005^{\prime \prime}$ for welded construction

DERATING

WELDED CONSTRUCTION 2512, 2010, 1206, 0603
(1) Resistive element: solid metal nickel-chrome
 or manganese-copper alloy resistive element with low TCR (< $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$)
(2) Terminal: solid copper, $100 \% \operatorname{Sn}\left(200 \mu^{\prime \prime}\right.$ min. $)$ with $100 \% \mathrm{Ni}\left(40 \mu^{\prime \prime} \mathrm{min}.\right)$ under layer finish
(3) Terminal / element weld
(4) Silicone coating with ink print

PULSE CAPABILITY

www.vishay.com/resistors/power-metal-strip-calculator
CLAD CONSTRUCTION 0805

(1) Resistive element: $\mathrm{Ni}-\mathrm{Cr}$
(2) Terminal: solid copper, $100 \% \operatorname{Sn}\left(200 \mu^{\prime \prime} \mathrm{min}.\right)$ with $100 \% \mathrm{Ni}\left(40 \mu^{\prime \prime}\right.$ min.) under layer finish
(3) Terminal to element cladding
(4) High temperature encapsulant: "siliconized polyester" coating material

PERFORMANCE		CONDITIONS OF TEST
TEST	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}, 1000$ cycles, 15 min at each extreme	$\pm 0.5 \%+0.0005 \Omega$
Thermal shock	Refer to link for short time overload performance and pulse capability; www.vishay.com/resistors/power-metal-strip-calculator/	$\pm 0.5 \%+0.0005 \Omega$
Short time overload	$-65^{\circ} \mathrm{C}$ for 24 h	$\pm 0.5 \%+0.0005 \Omega$
Low temperature operation	1000 h at $+170{ }^{\circ} \mathrm{C}$	$\pm 1.0 \%+0.0005 \Omega$
High temperature exposure	$+85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}, 10 \%$ bias, 1000 h	$\pm 0.5 \%+0.0005 \Omega$
Bias humidity	100 g 's for $6 \mathrm{~ms}, 5$ pulses	$\pm 0.5 \%+0.0005 \Omega$
Mechanical shock	Frequency varied 10 Hz to 2000 Hz in $1 \mathrm{~min}, 3$ directions, 12 h	$\pm 0.5 \%+0.0005 \Omega$
Vibration	1000 h at $70^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$ "ON", 0.5 h "OFF"	$\pm 1.0 \%+0.0005 \Omega$
Load life	$+260^{\circ} \mathrm{C}$ solder, 10 s to 12 s dwell, $25 \mathrm{~mm} / \mathrm{s}$ emergence	$\pm 0.5 \%+0.0005 \Omega$
Resistance to solder heat	MIL-STD-202, method $106,0 \%$ power, 7 b not required	$\pm 0.5 \%+0.0005 \Omega$
Moisture resistance		

PACKAGING (1)				
DEL	REEL			
LL	TAPE WIDTH	DIAMETER	PIECES / REEL	CODE
WSLP0603	$8 \mathrm{~mm} /$ punched paper	$178 \mathrm{~mm} / 7^{\prime \prime}$	5000	EA
WSLP0805	$8 \mathrm{~mm} /$ punched paper	$178 \mathrm{~mm} / 7^{\prime \prime}$	5000	EA
WSLP1206	$8 \mathrm{~mm} /$ embossed plastic	$178 \mathrm{~mm} / 7^{\prime \prime}$	4000	EA
WSLP2010	$12 \mathrm{~mm} /$ embossed plastic	$178 \mathrm{~mm} / 7^{\prime \prime}$	4000	EA
WSLP2512	$12 \mathrm{~mm} /$ embossed plastic	$178 \mathrm{~mm} / 7^{\prime \prime}$	2000	EA

Notes

- Embossed carrier tape per EIA-481
(1) Additional packaging details at www.vishay.com/doc?20051

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Current Sense Resistors - SMD category:

Click to view products by Vishay manufacturer:

Other Similar products are found below :
CRL0603-FW-R700ELF 65709-330JE PF2512FKF7W0R007L PR2512FKF7W0R003L PR2512FKF7W0R005L PF2512FKF7W0R006L PF2512FKF7W0R033L CD2015FC-0.10-1\% PR2512FKF7W0R004L RC1005F124CS RL73K3AR56JTDF RL7520WT-R001-F
RL7520WT-R009-G RL7520WT-R020-F RLP73N1ER43JTD LRC-LR2512LF-01-R820J WR06X104JGLJ TL2BR01F 65709-330 SP1R12J RL7520WT-R039-G PF1206FRF7W0R02L RL7520WT-R002-F RL7520WT-R047-F RL7520WT-R005-F KRL1632E-C-R200-F-T5 KRL1632E-C-R200-F-T1 Y14880R02000B9R RLP73M1ER051FTDF RLP73M2AR051FTDF RLP73M2AR075FTDF RLP73K2A1R0FTDF RLP73M1JR051FTDF RLP73N1JR47FTDF SR731ERTTP5R10F SR731ERTTP100J SR731ERTTP6R80F SR731ERTTP4R70F SR731ERTTP2R20F SR731ERTTP3R90F SR731ERTTP1R00F SR731ERTTP10R0F SR731ERTTP2R00F SR731ERTTP8R20F SR731ERTTP3R9J SR731ERTTP8R2J SR731ERTTP2R0J SR731ERTTP4R7J SR731ERTTP9R1J SR731ERTTP1R0J

