Cemented Wirewound Resistors with Lugs

FEATURES

- Complete welded construction
- Ceramic core
- Available in adjustable $=$ " E " or non inductive design = "Ni"

RoHS complant Green $(5-2008)^{\star *}$

- Lugs with various termination styles for soldering or bolt connection
- Compliant to RoHS Directive 2002/95/EC

STANDARD ELECTRICAL SPECIFICATIONS						
MODEL	VARIANT/ TERMINAL	POWER RATING $P_{40}{ }^{\circ} \mathrm{C}$	LIMITING VOLTAGE	RESISTANCE RANGE ${ }^{(1)}$		tolerance
				TCR - $10 . .$. - $80 \mathrm{ppm} / \mathrm{K}$	TCR $100 \ldots 180 \mathrm{ppm} / \mathrm{K}$	
zWS6	SL	6 W	$\sqrt{P \times R}$	0.82Ω to $5.1 \mathrm{k} \Omega$	1.8Ω to $13 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
				2.7Ω to $5.1 \mathrm{k} \Omega$		± 2 \%
	ESL			0.82Ω to 130Ω	1.8Ω to $4.7 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SL			0.15Ω to 910Ω	0.33Ω to $2.4 \mathrm{k} \Omega$	$\pm 10 \%$
				1Ω to 910Ω	2Ω to $2.4 \mathrm{k} \Omega$	$\pm 5 \%$
zWS8	SL, SS	8 W	$\sqrt{P \times R}$	0.68Ω to $7.5 \mathrm{k} \Omega$	1.8Ω to $20 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	SL, SS			3.3Ω to $7.5 \mathrm{k} \Omega$	-	$\pm 2 \%$
	ESL, ESS			0.62Ω to 200Ω	1.8Ω to $6.8 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SL, Ni SS			0.24Ω to $1.3 \mathrm{k} \Omega$	0.56Ω to $3.6 \mathrm{k} \Omega$	$\pm 10 \%$
	Nist, Niss			1Ω to $1.3 \mathrm{k} \Omega$	2Ω to $3.6 \mathrm{k} \Omega$	± 5 \%
zWS12	SL, SS	12 W	$\sqrt{P \times R}$	0.62Ω to $10 \mathrm{k} \Omega$	1.8Ω to $27 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	SL, SS			3Ω to $10 \mathrm{k} \Omega$	-	± 2 \%
	ESL, ESS			0.56Ω to 270Ω	1.8Ω to $9.1 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SL, Ni SS			0.33Ω to $1.8 \mathrm{k} \Omega$	0.75Ω to $5.1 \mathrm{k} \Omega$	$\pm 10 \%$
	NisL, NiSS			1Ω to $1.8 \mathrm{k} \Omega$	2Ω to $5.1 \mathrm{k} \Omega$	$\pm 5 \%$
zWS15	SL, SS	15 W	$\sqrt{P \times R}$	0.68Ω to $12 \mathrm{k} \Omega$	2.2Ω to $33 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	SL, SS			2.2Ω to $12 \mathrm{k} \Omega$		± 2 \%
	ESL, ESS			0.68Ω to 330Ω	2.2Ω to $11 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SL, Ni SS			0.39Ω to $2.2 \mathrm{k} \Omega$	0.82Ω to $6.2 \mathrm{k} \Omega$	$\pm 10 \%$
	Nist, Niss			1Ω to $2.2 \mathrm{k} \Omega$	2.0Ω to $6.2 \mathrm{k} \Omega$	$\pm 5 \%$
zWS20	SL, SS, SB, FST	20 W	$\sqrt{P \times R}$	0.62Ω to $16 \mathrm{k} \Omega$	1.3Ω to $43 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	SL, SS, SB, FST			2.7Ω to $16 \mathrm{k} \Omega$	-	$\pm 2 \%$
	ESL, ESS, ESB, E FST			0.62Ω to 430Ω	1.3Ω to $15 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SL, Ni SS, Ni SB, Ni FST			0.47Ω to $2.7 \mathrm{k} \Omega$	1.1Ω to $8.2 \mathrm{k} \Omega$	± 10 \%
				1Ω to $2.7 \mathrm{k} \Omega$	2Ω to $8.2 \mathrm{k} \Omega$	$\pm 5 \%$
zWS35		35 W	$\sqrt{P \times R}$	1.1Ω to $30 \mathrm{k} \Omega$	2.7Ω to $82 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	SL, SS, SB, FST			1.3Ω to $30 \mathrm{k} \Omega$	-	± 2 \%
	ESL, E SS, E SB, E FST			1.1Ω to 750Ω	2.7Ω to $27 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SL, Ni SS, Ni SB, Ni FST			0.91Ω to $5.1 \mathrm{k} \Omega$	2Ω to $15 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
ZWS50	SS, SSB, SB, FST	50 W	$\sqrt{P \times R}$	1.3Ω to $33 \mathrm{k} \Omega$	3Ω to $91 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
				2.2Ω to $33 \mathrm{k} \Omega$	-	± 2 \%
	ESS, E SSB, E SB, E FST			1.3Ω to 910Ω	3Ω to $33 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SS, Ni SSB, Ni SB, Ni FST			1.1 的 to $6.2 \mathrm{k} \Omega$	2.4Ω to $16 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
ZWS100	SS, SSB, SB, FST	100 W	$\sqrt{P \times R}$	2.7Ω to $68 \mathrm{k} \Omega$	6.2Ω to $68 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
					-	± 2 \%
	ESS, E SSB, E SB, EFST			2.7Ω to $1.8 \mathrm{k} \Omega$	6.2Ω to $68 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SS, Ni SSB, Ni SB, Ni FST			2.2Ω to $13 \mathrm{k} \Omega$	4.7Ω to $33 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$

Notes

${ }^{(1)}$ Resistance value to be selected for $\pm 10 \%$ tolerance from E12 and for $\pm 5 \%$ and $\pm 2 \%$ from E24

- For available "Mounting Accessories for Resistors", please see: www.vishay.com/ppg?21015
** Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

MODEL	VARIANT/ TERMINAL	$\begin{gathered} \hline \text { POWER } \\ \text { RATING } \\ P_{40^{\circ} \mathrm{C}} \end{gathered}$	LIMITING voltage	RESISTANCE RANGE ${ }^{(1)}$		TOLERANCE
				TCR-10...-80 ppm/K	TCR 100 ... 180 ppm/K	
ZWS150	SS, SSB, SB, FST	150 W	$\sqrt{P \times R}$	4.7Ω to $130 \mathrm{k} \Omega$	11Ω to $360 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
					-	± 2 \%
	E SS, E SSB, E SB, E FST			4.7Ω to $3.3 \mathrm{k} \Omega$	11Ω to $120 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SS, Ni SSB, Ni SB, Ni FST			3.9Ω to $22 \mathrm{k} \Omega$	9.1Ω to $62 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
ZWS250	SS, SSB, SB, FST	250 W	$\sqrt{P \times R}$	8.2Ω to $220 \mathrm{k} \Omega$	20Ω to $620 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	SS, SSB, SB, FST			8.2Ω to $220 \mathrm{k} \Omega$	-	± 2 \%
	E SS, E SSB, E SB, E FST			8.2Ω to $6.2 \mathrm{k} \Omega$	20Ω to $220 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SS, Ni SSB, Ni SB, Ni FST			6.8Ω to $39 \mathrm{k} \Omega$	15Ω to $110 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
ZWS30/100	SS, SSB, SB, FST	75 W	$\sqrt{P \times R}$	2.4Ω to $62 \mathrm{k} \Omega$	5.1Ω to $180 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
				3Ω to $62 \mathrm{k} \Omega$	-	± 2 \%
	E SS, E SSB, E SB, E FST			2.4Ω to $1.6 \mathrm{k} \Omega$	5.1Ω to $56 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SS, Ni SSB, Ni SB, Ni FST			2Ω to $11 \mathrm{k} \Omega$	4.3Ω to $30 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
ZWS30/133	SS, SSB, SB, FST	110 W	$\sqrt{P \times R}$	3.3Ω to $91 \mathrm{k} \Omega$	7.5Ω to $240 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
					-	± 2 \%
	E SS, E SSB, E SB, E FST			3.3Ω to $2.4 \mathrm{k} \Omega$	7.5Ω to $82 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$
	Ni SS, Ni SSB, Ni SB, Ni FST			2.7Ω to $16 \mathrm{k} \Omega$	6.2Ω to $43 \mathrm{k} \Omega$	$\pm 10 \%, \pm 5 \%$

Notes

${ }^{(1)}$ Resistance value to be selected for $\pm 10 \%$ tolerance from E12 and for $\pm 5 \%$ and $\pm 2 \%$ from E24

- For available "Mounting Accessories for Resistors", please see: www.vishay.com/ppg?21010

PART NUMBER AND PRODUCT DESCRIPTION

Part Number: ZWS006331001KLX000

Notes

${ }^{(1)}$ See "Part Number" above
${ }^{(2)}$ See "Packaging Code" above

DIMENSIONS

SL TERMINALS

ADJUSTABLE LUGS

SS TERMINALS

CORE SECTION

MODEL TERMINAL	DIMENSIONS in millimeters [inches]						
	ZWS 6 ZWS 6 E ZWS 6 Ni	ZWS 8 ZWS 8 E ZWS $8 \mathbf{N i}$		$\begin{gathered} \text { ZWS } 12 \\ \text { ZWS } 12 \mathrm{E} \\ \text { ZWS } 12 \mathrm{Ni} \end{gathered}$		ZWS 15 ZWS 15 E ZWS 15 Ni	
	SL	SL	SS	SL	SS	SL	SS
DIMENSION D	$\begin{aligned} 7.5 & \pm 0.5 \\ {[0.295} & \pm 0.020] \end{aligned}$	$\begin{aligned} 9.5 & \pm 0.5 \\ {[0.374} & \pm 0.020] \end{aligned}$		$\begin{gathered} 11.8 \pm 0.8 \\ {[0.465 \pm 0.031]} \end{gathered}$		$\begin{gathered} 11.8 \pm 0.8 \\ {[0.465 \pm 0.031]} \end{gathered}$	
L	$\begin{gathered} 45 \pm 1.5 \\ {[1.772 \pm 0.059]} \end{gathered}$	$\begin{gathered} 50 \pm 1.5 \\ {[1.969 \pm 0.059]} \end{gathered}$		$\begin{gathered} 55 \pm 1.5 \\ {[2.165 \pm 0.059]} \end{gathered}$		$\begin{gathered} 62 \pm 2 \\ {[2.441 \pm 0.079]} \end{gathered}$	
a	$\begin{gathered} 36 \\ {[1.417]} \end{gathered}$	$\begin{gathered} 39 \\ {[1.535]} \end{gathered}$	$\begin{gathered} 40 \\ {[1.575]} \end{gathered}$	$\begin{gathered} 43 \\ {[1.693]} \end{gathered}$	$\begin{gathered} 44 \\ {[1.732]} \end{gathered}$	$\begin{gathered} 50 \\ {[1.969]} \end{gathered}$	$\begin{gathered} 51 \\ {[2.008]} \end{gathered}$
b	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$
b_{1}	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$			
c	$\begin{gathered} 15.5 \\ {[0.610]} \end{gathered}$	$\begin{gathered} 18 \\ {[0.709]} \end{gathered}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 19 \\ {[0.748]} \end{gathered}$	$\begin{gathered} 11.5 \\ {[0.453]} \end{gathered}$	$\begin{gathered} 19 \\ {[0.748]} \end{gathered}$	$\begin{gathered} 11.5 \\ {[0.453]} \end{gathered}$
d	$\begin{gathered} 2.6 \\ {[0.102]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{gathered} 5.5 \\ {[0.217]} \end{gathered}$			
e	$\begin{gathered} 1.5 \\ {[0.059]} \end{gathered}$	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	M 3×12	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	M 3×12	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	M 3×12
e_{1}	$\begin{gathered} 2.8 \\ {[0.110]} \end{gathered}$						
k	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{gathered} 2.5 \\ {[0.098]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$
MASS (g)	5	6.5		11.5		12.5	

DIMENSIONS (continued)

SL TERMINALS

FST TERMINALS

ZWS 35
FST A 6.3 mm [0.248]/DIN 46244

SS AND SSB TERMINALS

	DIMENSIONS in millimeters [inches]															
MODEL	ZWS 20 ZWS 20 E ZWS 20 Ni				ZWS 35 ZWS 35 E ZWS 35 Ni				ZWS 50 ZWS 50 E ZWS 50 Ni				ZWS 100 ZWS 100 E ZWS 100 Ni			
TERMINAL	SL	SS	SB	FST	SL	SS	SB	FST	SS	SSB	SB	FST	SS	SSB	SB	FST
DIMENSION D	$\begin{gathered} 14.8 \pm 0.8 \\ {[0.583 \pm 0.031]} \end{gathered}$				$\begin{gathered} 14.8 \pm 0.8 \\ {[0.583 \pm 0.031]} \end{gathered}$				$\begin{gathered} 22.3 \pm 1.3 \\ {[0.878 \pm 0.051]} \end{gathered}$				$\begin{gathered} 22.3 \pm 1.3 \\ {[0.878 \pm 0.051]} \end{gathered}$			
L	$\begin{gathered} 62 \pm 2 \\ {[2.441 \pm 0.079]} \end{gathered}$				$\begin{gathered} 100 \pm 2 \\ {[3.937 \pm 0.079]} \end{gathered}$				$\begin{gathered} 100 \pm 2 \\ {[3.937 \pm 0.079]} \end{gathered}$				$\begin{gathered} 165 \pm 2 \\ {[6.496 \pm 0.079]} \end{gathered}$			
$\begin{aligned} & a \pm 2 \\ & {[a \pm 0.079]} \end{aligned}$	$\begin{array}{\|c\|} \hline 50 \\ {[1.969]} \end{array}$	$\begin{array}{\|c\|} \hline 51 \\ {[2.008]} \end{array}$	$\left[\begin{array}{c} 51 \\ {[2.008]} \end{array}\right.$	$\begin{array}{\|c\|} \hline 48 \\ {[1.890]} \end{array}$	$\begin{gathered} 86 \\ {[3.386]} \end{gathered}$	$\begin{array}{\|c\|} \hline 87 \\ {[3.425]} \end{array}$	$\begin{array}{\|c\|} \hline 87 \\ {[3.425]} \end{array}$	$\begin{gathered} 84 \\ {[3.307]} \end{gathered}$	$\begin{gathered} 71 \\ {[2.795]} \end{gathered}$				$\begin{gathered} 136 \\ {[5.354]} \\ \hline \end{gathered}$			
b	$\begin{array}{\|c\|} \hline 4 \\ {[0.157]} \end{array}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 6.3 \\ {[0.248]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\left[\begin{array}{c} 6.3 \\ {[0.248]} \end{array}\right.$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{gathered} 6.3 \\ {[0.248]} \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{gathered} 6.3 \\ {[0.248]} \end{gathered}$
b_{1}	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\left[\begin{array}{c} 5 \\ {[0.197]} \end{array}\right.$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \\ {[0.197]} \end{array}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\left[\begin{array}{c} 5 \\ {[0.197]} \end{array}\right.$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{array}{\|c\|} \hline 5 \\ {[0.197]} \end{array}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\left[\begin{array}{c} 5 \\ {[0.197]} \end{array}\right.$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$			
c	$\begin{array}{\|c\|} \hline 20.5 \\ {[0.807]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13 \\ {[0.512]} \\ \hline \end{array}$	$\begin{gathered} 23 \\ {[0.906]} \\ \hline \end{gathered}$	$\begin{gathered} 23.5 \\ {[0.925]} \\ \hline \end{gathered}$	$\left[\begin{array}{c} 20.5 \\ {[0.807]} \end{array}\right.$	$\begin{gathered} 13 \\ {[0.512]} \end{gathered}$	$\begin{gathered} 23 \\ {[0.906]} \end{gathered}$	$\left[\begin{array}{c} 23.5 \\ {[0.925]} \end{array}\right.$	$\begin{array}{c\|} \hline 18.5 \\ {[0.728]} \\ \hline \end{array}$	$\begin{gathered} 18.5 \\ {[0.728]} \\ \hline \end{gathered}$	$\begin{gathered} 29.5 \\ {[1.161]} \end{gathered}$	$\begin{array}{\|c\|} \hline 27 \\ {[1.063]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 18.5 \\ {[0.728]} \\ \hline \end{array}$	$\left\lvert\, \begin{gathered} 18.5 \\ {[0.728]} \end{gathered}\right.$	$\left[\begin{array}{c} 29.5 \\ {[1.161]} \end{array}\right.$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$
d	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{gathered} 5.5 \\ {[0.217]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 5.5 \\ {[0.217]} \\ \hline \end{array}$	$\begin{gathered} 5.5 \\ {[0.217]} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{array}{\|c} 10 \\ {[0.394]} \\ \hline \end{array}$	$\begin{gathered} 10 \\ {[0.394]} \\ \hline \end{gathered}$			
e	$\begin{array}{\|c\|} \hline 2 \\ {[0.079]} \\ \hline \end{array}$	M3 $\times 12$	M3 $\times 12$	-	$\begin{gathered} 2 \\ {[0.079]} \end{gathered}$	M3 $\times 12$	M 3×12	-	M4 $\times 16$	M4 $\times 18$	$\mathrm{M} 4 \times 16$	-	M4 $\times 16$	M 4×18	M 4×16	-
e_{1}	$\begin{array}{\|c\|} \hline 3.2 \\ {[0.126]} \end{array}$	$\begin{gathered} 3.2 \\ {[0.126]} \end{gathered}$	$\left[\begin{array}{c} 3.2 \\ {[0.126]} \end{array}\right.$	$\begin{array}{c\|} \hline 3.2 \\ {[0.126]} \end{array}$	$\begin{gathered} 3.2 \\ {[0.126]} \end{gathered}$	$\left[\begin{array}{c} 3.2 \\ {[0.126]} \end{array}\right.$	$\begin{gathered} 3.2 \\ {[0.126]} \end{gathered}$	$\left[\begin{array}{c} 3.2 \\ {[0.126]} \end{array}\right.$	$\begin{gathered} 3.2 \\ {[0.126]} \end{gathered}$							
k	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} 3 \\ {[0.118]} \end{gathered}$	$\begin{gathered} \hline 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 4 \\ {[0.157]} \end{gathered}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{gathered} 10.5 \\ {[0.413]} \end{gathered}$
MASS (g)	25				33				80				113			

DIMENSIONS (continued)

SS TERMINALS

SSB TERMINALS

FST TERMINALS

CORE SECTION

ADJUSTABLE
LUGS
from ZWS 12 E

MODEL TERMINAL	DIMENSIONS in millimeters [inches]															
	$\begin{gathered} \text { ZWS } 150 \\ \text { ZWS } 150 \mathrm{E} \\ \text { ZWS } 150 \mathrm{Ni} \end{gathered}$				$\begin{gathered} \text { ZWS } 250 \\ \text { ZWS } 250 \mathrm{E} \\ \text { ZWS } 250 \mathrm{Ni} \end{gathered}$				ZWS 30/100 ZWS 30/100 E ZWS 30/100 Ni				ZWS 30/133ZWS 30/133 EZWS 30/133 Ni			
	SS	SSB	SB	FST												
DIMENSION D	$\begin{gathered} 22.3 \pm 1.3 \\ {[0.878 \pm 0.051]} \end{gathered}$				$\begin{gathered} 32.3 \pm 1.5 \\ {[1.28 \pm 0.059]} \end{gathered}$				$\begin{gathered} 32.3 \pm 1.5 \\ {[1.28 \pm 0.059]} \end{gathered}$				$\begin{gathered} 32.3 \pm 1.5 \\ {[1.28 \pm 0.059]} \end{gathered}$			
L	$\begin{gathered} 265 \pm 4 \\ {[10.433 \pm 0.079]} \end{gathered}$				$\begin{gathered} 330 \pm 5 \\ {[12.992 \pm 0.197]} \end{gathered}$				$\begin{gathered} 100 \pm 2.5 \\ {[3.937 \pm 0.098]} \end{gathered}$				$\begin{gathered} 133 \pm 3 \\ {[5.236 \pm 0.118]} \end{gathered}$			
a	$\begin{gathered} 236 \\ {[9.291]} \end{gathered}$				$\begin{gathered} 280 \\ {[11.024]} \end{gathered}$				$\begin{gathered} 85 \\ {[3.346]} \end{gathered}$				$\begin{gathered} 118 \\ {[4.646]} \end{gathered}$			
b	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\left\|\begin{array}{c} 8 \\ {[0.315]} \end{array}\right\|$	$\begin{gathered} 6.3 \\ {[0.248]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\left.\begin{array}{c} 8 \\ {[0.315]} \end{array}\right]$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\left[\begin{array}{c} 6.3 \\ {[0.248]} \end{array}\right.$	$\left\|\begin{array}{c} 8 \\ {[0.315]} \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ {[0.315]} \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ {[0.315]} \end{array}\right\|$	$\begin{gathered} 6.3 \\ {[0.248]} \end{gathered}$	$\left\|\begin{array}{c} 8 \\ {[0.315]} \end{array}\right\|$	$\left\lvert\, \begin{gathered} 8 \\ {[0.315]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{c\|} 6.3 \\ {[0.248]} \end{array}$
b_{1}	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\begin{gathered} 5 \\ {[0.197]} \end{gathered}$	$\left[\begin{array}{c} 5 \\ {[0.197]} \end{array}\right.$	$\begin{array}{c\|} \hline 5 \\ {[0.197]} \end{array}$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\begin{gathered} 8 \\ {[0.315]} \\ \hline \end{gathered}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\begin{array}{c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\left\|\begin{array}{c} 8 \\ {[0.315]} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\begin{gathered} 8 \\ {[0.315]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array} \right\rvert\,$	$\begin{array}{c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$	$\begin{array}{\|c\|} \hline 8 \\ {[0.315]} \end{array}$
c	$\begin{array}{\|c\|} \hline 18.5 \\ {[0.728]} \end{array}$	$\begin{array}{c\|} \hline 18.6 \\ {[0.732]} \end{array}$	$\begin{array}{\|c\|} \hline 29.5 \\ {[1.161]} \end{array}$	$\begin{gathered} 27 \\ {[1.063]} \end{gathered}$	$\begin{array}{\|c\|} \hline 23.5 \\ {[0.925]} \end{array}$	$\begin{array}{\|c\|} \hline 23.5 \\ {[0.925]} \end{array}$	$\begin{gathered} 35 \\ {[1.378]} \end{gathered}$	$\begin{array}{\|c\|} \hline 31.5 \\ {[1.24]} \end{array}$	$\begin{gathered} 23.5 \\ {[0.925]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 23.5 \\ {[0.925]} \end{array} \right\rvert\,$	$\begin{array}{c\|} \hline 35 \\ {[1.378]} \end{array}$	$\begin{gathered} \hline 31.5 \\ {[1.24]} \end{gathered}$	$\left.\begin{array}{\|c\|} \hline 23.5 \\ {[0.925]} \end{array} \right\rvert\,$	$\begin{array}{c\|} \hline 23.5 \\ {[0.925]} \end{array}$	$\begin{gathered} 35 \\ {[1.378]} \end{gathered}$	$\begin{array}{\|c\|} \hline 31.5 \\ {[1.24]} \end{array}$
d	$\left\lvert\, \begin{gathered} 10 \\ {[0.394]} \end{gathered}\right.$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 10 \\ \hline[0.394] \end{gathered}$	$\begin{gathered} 10 \\ {[0.394]} \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \\ \hline \end{gathered}$	$\begin{gathered} 20 \\ {[0.787]} \end{gathered}$	$\begin{array}{c\|} \hline 20 \\ {[0.787]} \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \\ \hline \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\left\lvert\, \begin{gathered} 14 \\ {[0.551]} \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \\ \hline \end{array}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{gathered} 14 \\ {[0.551]} \end{gathered}$	$\begin{array}{\|c\|} \hline 14 \\ {[0.551]} \end{array}$
e	M 4×16	M4 $\times 18$	M4 $\times 16$	-	M4 $\times 16$	M 4×18	M4 $\times 16$	-	M 4×16	M 4×18	M 4×16	-	M4 $\times 16$	M4 $\times 18$	M4 $\times 16$	-
e_{1}	$\left\lvert\, \begin{gathered} 3.2 \\ {[0.126]} \end{gathered}\right.$	$\begin{gathered} 3.2 \\ {[0.126]} \end{gathered}$	$\begin{array}{c\|} \hline 3.2 \\ \hline 0.126] \end{array}$	$\begin{array}{c\|} \hline 3.2 \\ {[0.126]} \end{array}$	$\begin{gathered} 4.2 \\ {[0.165]} \end{gathered}$	$\begin{array}{\|c\|} \hline 42 \\ {[1.654]} \\ \hline \end{array}$	$\begin{gathered} 42 \\ {[1.654]} \end{gathered}$	$\begin{array}{c\|} 4.2 \\ {[0.165]} \end{array}$	$\begin{gathered} 4.2 \\ {[0.165]} \end{gathered}$	$\begin{array}{\|c\|} \hline 4.2 \\ {[0.165]} \end{array}$	$\left\|\begin{array}{c} 4.2 \\ {[0.165]} \end{array}\right\|$	$\begin{array}{c\|} \hline 4.2 \\ {[0.165]} \end{array}$	$\begin{array}{\|c\|} \hline 4.2 \\ {[0.165]} \end{array}$	$\begin{array}{c\|} 4.2 \\ {[0.165]} \end{array}$	$\begin{gathered} 4.2 \\ {[0.165]} \end{gathered}$	$\begin{array}{c\|} \hline 4.2 \\ {[0.165]} \end{array}$
k	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \\ \hline \end{array}$	$\begin{array}{c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{array}{\|c\|} \hline 10.5 \\ {[0.413]} \end{array}$	$\begin{gathered} \hline 10.5 \\ {[0.413]} \end{gathered}$	$\begin{gathered} 21 \\ {[0.827]} \end{gathered}$	$\begin{array}{c\|} \hline 21 \\ {[0.827]} \\ \hline \end{array}$	$\begin{gathered} 21 \\ {[0.827]} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 21 \\ {[0.827]} \end{array}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{array}{\|c\|} \hline 3.5 \\ {[0.138]} \end{array}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{array}{\|c\|} \hline 3.5 \\ {[0.138]} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3.5 \\ {[0.138]} \end{array}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{gathered} 3.5 \\ {[0.138]} \end{gathered}$	$\begin{array}{\|c\|} \hline 3.5 \\ {[0.138]} \end{array}$
MASS (g)	194				375				167				212			

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Tools category:
Click to view products by Vishay manufacturer:

Other Similar products are found below :
CR-05FL7--150R CR-05FL7--698K 899-2-KT46 899-5-KT46 CR-0AFL4--332K CR-12FP4--260R CRCW04021100FRT7 CRCW04021961FRT7 5800-0090 CRCW04024021FRT7 CRCW040254R9FRT7 CRCW0603102JRT5 59065-5 00-8273-RDPP 00-8729WHPP 593033593058593072593564100593575593591593593 011349-000 LTILA506SBLAMNBL CRCW08052740FRT1 LUC012S070DSM LUC-018S070DSP 599-2021-3-NME 599-JJ-2021-03 00-5080-YWPP 5E4750/01-20R0-T/R LW1A-L1-GL LW1A-P1-GD LW1L-A1C10V-GL LW1L-M1C70-A 0202-0173 00-9089-RDPP 00-9300-RDPP CRCW2010331JR02 01-1003W-8/32-10 601-GP-08KT39 601-JJ-06 601-SPB 601YSY 602-JJ-03 602SPB 602Z 603-JJ-07-FP 603-JJY-04 604J

