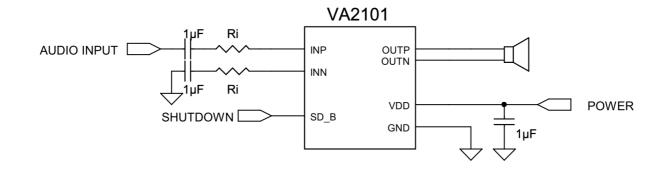


3W Filterless Mono Class D Audio Amplifier

General Description

The VA2101 is a cost-effective filter-less Class D mono audio power amplifier that operates in wide range of various power supplies. Only three external components space saving offers best performance and minimal occupied area for mobile application such as Pad/Netbook/GPS applications.

VA2101 is capable of 3.1W high performance output power at 3Ω load in 5V supply. Other features like 88% efficiency, -70dB PSRR, fully differential design reduces RF interference and allows independent gain settings while summing signals from various audio sources.

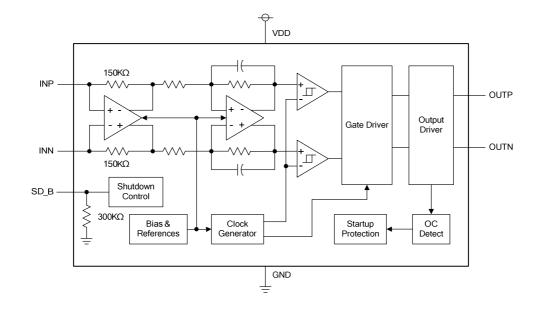

VA2101 also integrates 32ms Anti-Pop, Short Circuit Protection & Over-Heat Protection circuitry to ensure device reliability. These functionalities make it ideal for any portable device which demands more battery life.

VA2101 is available with SO-8/MSOP-8/DFN-8 (3x3) and RoHS 2.0 compliant Green or Lead/ Applications Halogen-free package.

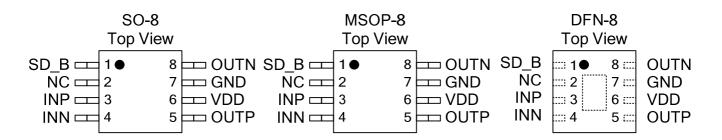
Features

- Operation Voltage from 2.8V to 5.5V
- Efficiency with an 8Ω speaker:
 - 88%@1.3W
- Efficiency with an 3Ω speaker:
 - 71%@3W
- 1.3W@8 Ω Load with THD+N <1%
- 2.3W@4 Ω Load with THD+N <1%
- 3.1W@3 Ω Load with THD+N <10%
- Shutdown current less than 1µA
- Ouiescent current less than 6mA
- PSRR, -70dB, No Need For Voltage Regulator _
- 32ms delay to eliminate input noise
- Short Circuit and Thermal protection
- RoHS 2.0 compliant SO-8, MSOP-8, DFN-8 3x3 Green or Lead/Halogen-free package available

- Portable Multimedia Device
- Pad Device/Netbook/GPS
- Set-Top Box
- LCD Monitor



Typical Application



Functional Block Diagram

Pin Assignments And Descriptions

Pin No.	Pin	I/O/P	Function Description	
1	SD_B	I	hutdown mode control terminal. Low active.	
2	NC	-	o internal connection.	
3	INP	I	Positive audio signal input.	
4	INN	I	legative audio signal input.	
5	OUTP	0	ositive BTL Output.	
6	VDD	Р	Power Supply.	
7	GND	Р	ower Ground.	
8	OUTN	0	Negative BTL Output.	

Absolutely Maximum Ratings

Over operating free-air temperature range, unless otherwise specified (* 1)

Symbol	Parameter	Limit	Unit
V _{DD} (VDD, PVDD)	Supply voltage	-0.3 to 6	V
V ₁ (RINN, RINP, LINN, LINP, SD_B)	Input voltage	0 to V_{DD}	V
T _A	Operating free-air temperature range	-40 ~ +85	۰C
Tj	Operating junction temperature range(* 2)	-40 to +150	۰C
T _{STG}	Storage temperature range	-65 to 150	۰C
R _(LOAD)	Minimum load resistance	3	Ω
Electrostatic discharge	Human body model	±2	kV
Electrostatic discharge	Machine model	±200	V

(*1): Stress beyond those listed at "absolute maximum rating" table may cause permanent damage to the device. These are stress rating ONLY. For functional operation are strongly recommend follow up "recommended operation conditions" table.

Recommended Operating Conditions

Over operating free-air temperature range, unless otherwise specified.

Symbol	Parameter	Test Condition	Specif	Unit	
Symbol	raiameter	rest condition	Min	Мах	Unit
V _{DD}	Supply Voltage	_	2.8	5.5	V
V _{IH}	High Level Input Voltage (SD_B)	$V_{DD}=5V$	2.0	V _{DD}	V
V _{IL}	Low Level Input Voltage (SD_B)	$V_{DD}=5V$	_	0.4	V
Ri	External Input Resistor	GAIN≤20V/V	15	-	kΩ
f _{osc}	PWM Carrier Frequency	$V_{DD} = 5V$	250	300	kHz
V _{IC}	Common Mode Input Voltage Range	VDD=2.8V~5.5V, CMRR≤-49dB	0.5	V _{DD} -0.8	V

Electrical Characteristics

 $T_{A}=25\,^{\circ}\!\!\mathrm{C},\,V_{DD}=5V,\,R_{L}{=}8\Omega,\,GAIN{=}10dB,\,unless$ otherwise noted.

Symbol	Parameter	Parameter Test Condition		Specification			Unit
Symbol	raiameter			Min	Тур.	Мах	Onic
$ V_{OS} $	Output Offset Voltage (Measured Differentially)	V1=0V, Av=20	dB, R∟=8Ω		1	25	mV
I _{IH}	High-Level Input Current	V _{DD} =5.5V,	V ₁ =5.8V			100	μA
111.	Low-Level Input Current	V _{DD} =5.5V, V	/ _I =-0.3V			5	μA
PSRR	DC Supply Rejection Ratio	V _{DD} =4.5V Gain=2			75	55	dB
CMRR	Common Mode Rejection Ratio	V_{DD} = 2.8 to 5.5V, V_{IC} = 0.5V to V_{DD} -0.8V			68	49	dB
		V _{DD} =5.5V,	no load		5.8	6.2	mA
I _{DD}	Quiescent Current	V _{DD} =3.6V			4.3	4.7	mA
		$V_{DD}=2.8V$			3.1	3.4	mA
Idd(shutdown)	Supply Current In Shutdown Mode	$SD_B=0.4V, V_{DD}$	₀=2.8V~5.5V		0.5	2	μA
R _{DS(ON)}	Drain-Source ON resistance ¹	V _{DD} =5V,	High Side		450	600	mΩ
		I _{OUT} =500mA Low Side	Low Side		450	600	
A	Amplifier Gain	$V_{\text{DD}}=2.8$	to 5.5V	<u>285k</u> <u>R</u> ı	<u>300k</u> Rı	<u>325k</u> Rı	V V
R _{SD-GND}	Resistance from SD_B to GND				300		kΩ

(1) Design center value.

Operating Characteristics

 $T_{\text{A}}=25\,^\circ\!\!\!\text{C}$ unless otherwise noted.

Symbol	Parameter	Test Condition		Specification			Unit
Symbol	Farameter	Test Condi		Min	Тур.	Мах	Unit
		THD+N=10%, f=1kHz,	$V_{DD} = 5V$		3.6		w
		$R_1 = 3\Omega$	$V_{DD} = 3.6V$		1.8		
		N[-322	$V_{DD} = 2.8V$		0.7		
		THD+N=1%, f=1kHz,	$V_{DD} = 5V$		2.8		
		$R_{L}=3\Omega$	$V_{DD} = 3.6V$		1.3		
			$V_{DD} = 2.8V$		0.56		
		THD+N=10%, f=1kHz,	$V_{DD} = 5V$		3		
		$R_{L}=4\Omega$	$V_{DD} = 3.6V$		1.5		W
Po	Output Power		$V_{DD} = 2.8V$		0.66		
10	output i owei	THD+N=1%, $f = 1$ kHz,	$V_{DD} = 5V$		2.3		
		$R_{L}=4\Omega$	$V_{DD} = 3.6V$		1.1		
			$V_{DD} = 2.8V$		0.48		
		THD+N=10%, f=1kHz, $R_L=8\Omega$	$V_{\text{DD}} = 5V$		1.7		w w
			$V_{DD} = 3.6V$		0.89		
			$V_{DD} = 2.8V$		0.4		
		THD+N=1%, f=1kHz, $R_{L}=8\Omega$	$V_{DD} = 5V$		1.33		
			$V_{DD} = 3.6V$		0.65		
			$V_{DD} = 2.8V$		0.3		
	Total Harmonic Dis-	V_{DD} =5V, P_{O} =1W, R_{L} =8 Ω , f=1kHz			0.18		
THD+N	tortion Plus Noise	V_{DD} =3.6V, P ₀ =0.5W, R _L =8 Ω , f=1kHz			0.16		%
		V_{DD} =3.0V, P_{O} =0.2W, R_{L} =8 Ω , f=1kHz			0.27		
$ \mathbf{K}_{SVR} $	Supply Ripple Rejec- tion Ration	V_{DD} =3.6V, Input AC-Gr f=215Hz, $V_{(RIPPLE)}$ =0.2V _{PP}	ounded, C _i =1µF,		67		dB
SNR	Signal-to-Noise Ra- tio	$V_{DD} = 5V, P_0 = 1W, R_L = 8\Omega$	2		93		dB
Vn	Output Voltage Noise	V _{DD} =5V, f=20Hz to 20kHz, Input AC-	No Weight		88		μV _{RMS}
- 11		Grounded, $C_i = 1 \mu F$	A Weighted		63		KWI3
CMRR	Common Mode Re- jection Ratio	V_{DD} =3.6V, V_{IC} =1 V_{PP}	f=217Hz		64		dB
Zı	Input Impedance			141	150	159	kΩ
	Start-up time from shutdown	$V_{DD}=3.6V$			32		ms

Functional Descriptions

The basic structure of VA2101 is a differential amplifier with differential inputs and BTL outputs. The VA2101 contains one differential amplifier and one common-mode amplifier. The value of differential amplifier output voltage is equal to the value of the differential input voltage multiplied with the set gain. The common-mode feedback ensures that the common-mode voltage at the output is biased around $V_{DD}/2$ regardless of the common-mode voltage at the input. The VA2101 can still be used with a single ended input. For some applications such as radio frequency consumer devices, it is recommended to design VA2101 in differential input configuration to ensure better noise rejection.

Input Resistors

The gain of VA2101 is set by external resistors R_1 shown in Figure 1. Set the gain of the amplifier according to the following equation:

$$Gain = \frac{2 \times 150 k\Omega}{R_{I}} \quad (\frac{V}{V}) \tag{1}$$

The gain should be set to 2 V/V or lower for best performance. In some cases, lower gain makes the input less susceptible to noise which could be coupled from other circuits or system ground.

Resistor matching is very important criteria in fully differential amplifiers. The balance of the output on the reference voltage depends on matched ratios of the input resistors. It is recommended to use 1% tolerance resistor or better for best performance.

The R_1 resistors should be placed close to the VA2101 and keep the input traces close to each other with the same length. Such idea can improve noise rejection because of the high CMRR.

Input Capacitors

The input capacitors may be needed for some applications or when the source is single-ended (See Figure 2). These capacitors will not only block the DC voltage at the amplifier input terminal but also create a high-pass filter together with the input resistors R_1 . The cut-off frequency of the high-pass filter is calculated according to the following equation:

$$f_{\rm C} = \frac{1}{2\pi \times R_{\rm I} \times C_{\rm I}}$$

The value of the input capacitor affects the low frequency performance of the circuit directly. For example, the frequency response of the speaker in mobile phone is usually bad in lower frequency band, so the cut-off frequency should be set to block lower frequency of audio band to avoid the distortion. For another example, the dominant noise frequency in power rail of a GSM mobile phone is at 217Hz. Setting cut-off frequency of high-pass filter above 217Hz can filter out this noise that it is not amplified and heard on the output. Capacitor has 10% tolerance or better is recommended for impedance matching.

Differential Circuit Configurations

The VA2101 can be used in many circuit input configurations. The simplest and best input configuration is the direct-coupled differential input show in Figure 1. The resistors R_1 set the gain of audio amplifier. Refer Equation (1) to calculate.

If necessary, the input capacitors can be also used in the differential input configuration shown in Figure 2. The reason to do so is usually to create the high-pass filter in audio signal input. In case of applying the high-pass filter, equation (1) listed above shall be used to find out the value of the R₁ for a proper gain and then using equation (2) to

obtain the value of C_1 to determine the cut-off frequency.

It is easily to handle multiple audio signal sources with the VA2101. Figure 3 shows a dual differential input configuration. The gain for each input source can be set independently according to Equation (3) and (4).

$$Gain 1 = \frac{2 \times 150 k\Omega}{R_{11}} \quad \left(\frac{V}{V}\right) \qquad (3)$$

$$Gain 2 = \frac{2 \times 150 k\Omega}{R_{I2}} \quad \left(\frac{V}{V}\right) \qquad (4)$$

The input capacitors can be used with one or more input source as well to have different frequency responses depending on the source or if a DC voltage needs to be blocked from the source.

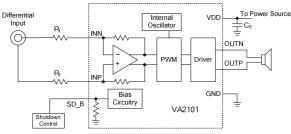


Figure 1. Differential Input Configuration

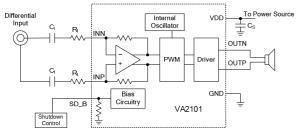


Figure 2. Differential Input Configuration with Input Capacitors

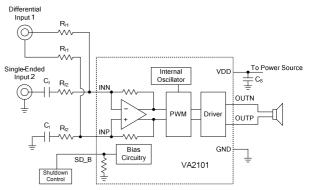


Figure 3. Dual Differential Input Configuration

Single-Ended Circuit Configurations

The VA2101 can also be used with single-ended signal sources, but input capacitors shall be added to block DC voltage at the input terminals. The typical single-ended configuration is shown in Figure 4. Use equation (1) to calculate the gain and set the frequency response by equation (2). Hold for the single-ended configuration as shown in Figure 4.

When using more than one single-ended source as shown in Figure 5. The gain and cut-off frequency $(f_{C1} \text{ and } f_{C2})$ for each input source can be set independently, shows in Equation (5) ~ Equation (8). Resistor, R_{I3} , and capacitor, C_{I3} , are needed on the INP terminal to match the impedance on the INN terminal. Equation (9) and Equation (10) shows how to calculate C_{I3} and R_{I3} value. The single-ended inputs must be driven by low impedance source even if one of the inputs is not outputting an AC signal.

$$Gain 1 = \frac{2 \times 150 k\Omega}{R_{11}} \quad \left(\frac{V}{V}\right) \qquad (5)$$

$$Gain 2 = \frac{2 \times 150 k\Omega}{R_{12}} \quad \left(\frac{V}{V}\right) \qquad (6)$$

$$f_{C1} = \frac{1}{2\pi \times R_{11} \times C_{11}}$$
 Hz (7)

$$f_{C2} = \frac{1}{2\pi \times R_{12} \times C_{12}} \quad Hz$$
 (8)

$$C_{I3} = C_{I1} + C_{I2} \tag{9}$$

$$R_{I3} = \frac{1}{\left(\frac{1}{R_{I1}} + \frac{1}{R_{I2}}\right)} = \frac{R_{I1} \times R_{I2}}{R_{I1} + R_{I2}}$$
(10)

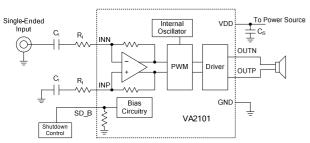


Figure 4. Single-Ended Input Configuration

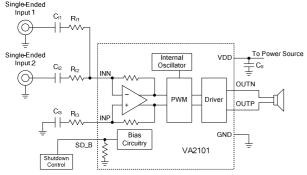


Figure 5. Dual Single-Ended Input Configuration

Mixed Input Configurations

A typical application with one single-ended source and one differential source shows in Figure 6. Ground noise can couple in through INP terminal with this method. It is better to use dual differential inputs. The cut-off frequency of the single-ended input is set by C_1 shows in Equation (13). To assure that each input is balanced, the single-ended input must be driven by a low-impedance source even if the input is not in use.

$$Gain 1 = \frac{2 \times 150 k\Omega}{R_{I1}} \left(\frac{V}{V}\right)$$
(11)

$$Gain \ 2 = \frac{2 \times 150 k\Omega}{R_{12}} \left(\frac{V}{V}\right) \tag{12}$$

$$\mathbf{f}_{C2} = \frac{1}{2\pi \times \mathbf{R}_{12} \times \mathbf{C}_{\mathrm{I}}} \quad \mathrm{Hz}$$
(13)

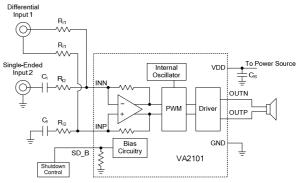


Figure 6. Dual Input with a Single-Ended Input and a Differential Input Configuration

Power Efficiency

The output transistors of VA2101 act as switches. The amount of power dissipated in the speaker may be estimated by first considering the overall efficiency of the system. The on-resistance of the output transistors is considered to cause the dominant loss in the system, the on-resistance of output transistors is small that the power loss is small and the power efficiency is high. When VA2101 connects with 8Ω loads, the power efficiency could be better than 88%.

Over-Heat Protection

The Over-Heat protection feature on the VA2101 prevents damage to the device when the internal die temperature exceeds 150°C. Once the die temperature exceeds the thermal set point, the device enters the shutdown state and the outputs are disabled. The device will be back to normal operation automatically when die temperature is

reduced.

Output Short Protection

The VA2101 has output short circuit protection circuitry on the outputs that prevents the misconnections such as output to output short, output to GND short and output to VDD short. VA2101 enters the shutdown state and the outputs are disabled when detects output short. This is a latched fault and must be reset by cycling the voltage on the SD_B pin to a logic low and back to the logic high, or cycling the power off and then back on. This clears the short-circuit flag and allow for normal operation if the short was removed. If the short was not removed, the protection circuitry activates again.

Low ESR Capacitors

Low ESR capacitors are highly recommended for this application. In general, a practical capacitor can be modeled simply as a resistor in series with an ideal capacitor. The voltage drop across this unwanted resistor can eliminate the effects of the ideal capacitor. Place low ESR capacitors on supply circuitry can improve THD+N performance.

Decoupling Capacitors

VA2101 requires appropriate power decoupling to minimize the output total harmonic distortion (THD) and improve EMC performance. Power supply decoupling also prevents intrinsic oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling can be achieved by using two different types of capacitors which target different types of noise on the power supply lines. For higher frequency spikes, or digital hash on the rail, three good low ESR ceramic capacitors, for example 1µF, placed as close as possible to every VDD pins works best. For filtering lower frequency noise, a larger low ESR aluminum electro-

lytic capacitor of $100\mu F$ or greater placed near the audio power amplifier is strongly suggested.

Shutdown Operation

The VA2101 provides a shutdown mode for reducing supply current to the absolute minimum level during periods of nonuse for battery-power conservation. The VA2101 has an internal $300k\Omega$ resistor connected between GND and SD_B pins. The purpose of this resistor is to eliminate any unwanted state changes when shutdown pin is floating. The SD_B input pin should be held high during normal operation when the amplifier is in use. Pulling SD_B low or left floating causes the outputs to mute and the amplifier to enter a lowcurrent state. During the shutdown mode, the DC quiescent current of the circuit does not exceed $0.5\muA$.

Output Filters

Design the VA2101 without the filter if the lengths of traces plus cables from amplifier to speaker are short enough (< 1 inch). This case is a typical application for applications based with the Class D amplifier without any filter. Some applications such as mobile phone and PDA are good examples for using Class D amplifier without any filter.

However, many applications still require the ferrite bead filter. The ferrite filter reduces EMI around 30 MHz. When selecting a ferrite bead, choose one with high impedance at high frequencies, but low impedance at low frequencies.

Use an LC output filter if there are low frequency (<1 MHz) EMI sensitive circuits and/or there are long wires from the amplifier to the speaker.

Figure 7 & 8 show typical L/C and ferrite bead output filters.

9

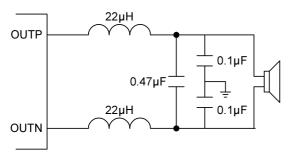


Figure 7. Typical L/C Output Filter

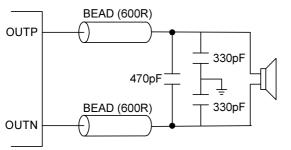


Figure 8. Typical Ferrite Chip Bead Output Filter

Typical Characteristics

Test Set-Up For Graphs

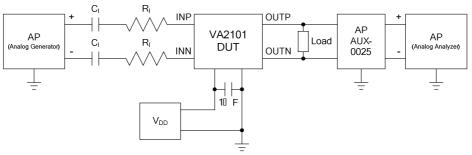


Figure 9. VA2101 Test Environment

4p

Typical Characteristics (cont.)

 $T_A=25\,{}^\circ\!C$, unless otherwise noted.

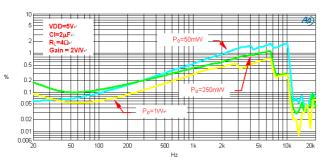


Figure 10. THD+N vs. Frequency

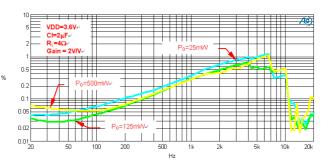


Figure 11. THD+N vs. Frequency

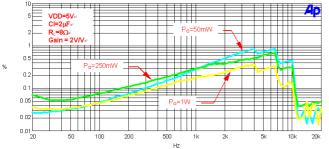


Figure 12. THD+N vs. Frequency

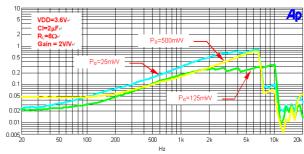


Figure 13. THD+N vs. Frequency

3.6V

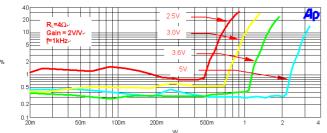
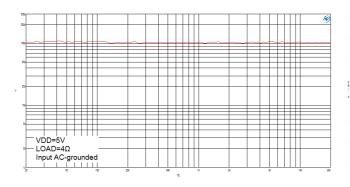



Figure 14. THD+N vs. Output Power

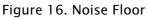


Figure 15. THD+N vs. Output Power

200m

500m

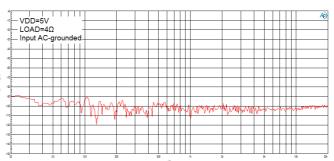


Figure 17. Noise FFT

5. Frequency Figure 13

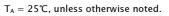
=8Ω

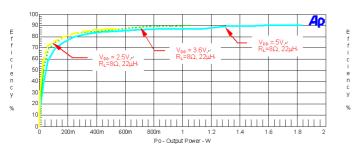
50n

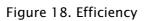
100m

11

0.


0.


0.5



Typical Characteristics (cont.)

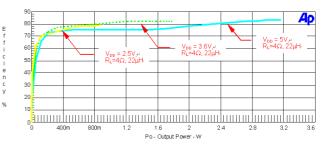


Figure 19. Efficiency

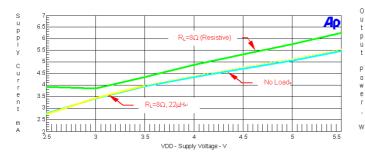


Figure 20. Supply Voltage vs. Quiescent Current

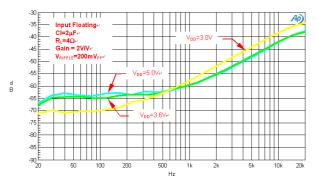


Figure 22. Supply Ripple Rejection Ration vs. Frequency at Input Floating

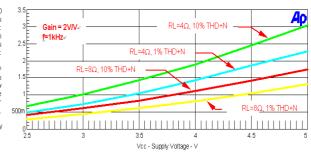


Figure 21. THD+N vs. Supply Voltage

Application Information

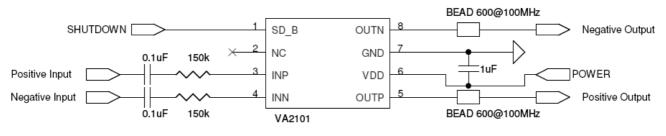
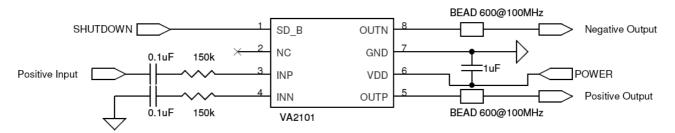
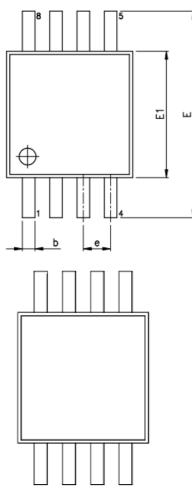
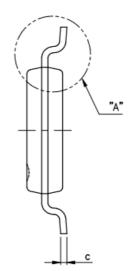
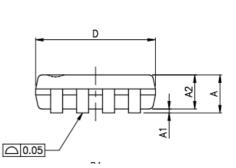


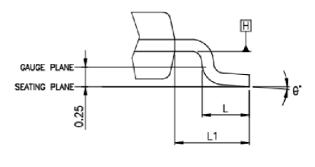
Figure 23. VA2101 with single-ended input configuration




Figure 24. VA2101 with differential input configuration

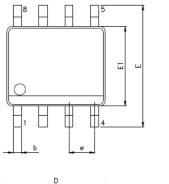

Package Information

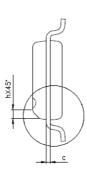

MSOP-8

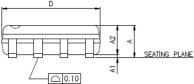


	SYMBOLS	MIN.	NOM.	MAX.
	A	-	-	1.10
	A1	0.00	-	0.15
	A2	0.75	0.85	0.95
∕ଈ	b	0.22	-	0.38
∕ଈ	с	0.08	-	0.23
	D		3.00 BSC	
	E		4.90 BSC	
	E1		3.00 BSC	
∕ଈ	е		0.65 BSC	
	L	0.40	0.60	0.80
	L1		0.95 REF	
	θ.	0	-	8
				UNIT : MM

DETAIL A


- NOTES:
- 1.JEDEC OUTLINE :
- STANDARD : MO-187 AA.
- THERMALLY ENHANCED : MO-187 AA-T. 2.DIMENSION D DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER END. DIMENSION E1 DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL
- NOT EXCEED 0.15 mm PER SIDE.
- 3.DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.
- 4.D AND E1 DIMENSIONS ARE DETERMINED AT DATUM [H] .





Package Information

SO-8

Sym-	Stan	dard	Thermal		
bols	Min.	Max.	Min.	Max.	
Α	-	1.75	-	1.70	
A1	0.10	0.25	0.00	0.15	
A2	1.25	-	1.25	-	
b	0.31	0.51	0.31	0.51	
с	0.10	0.25	0.10	0.25	
D	4.90 BSC		4.90 BSC		
E	6.00	BSC	6.00 BSC		
E1	3.90	BSC	3.90 BSC		
е	1.27 BSC		1.27	BSC	
L	0.40	1.27	0.40	1.27	
h	0.25	0.50	0.25	0.50	
θ°	0	8	0	8	

Notes:

GAUGE

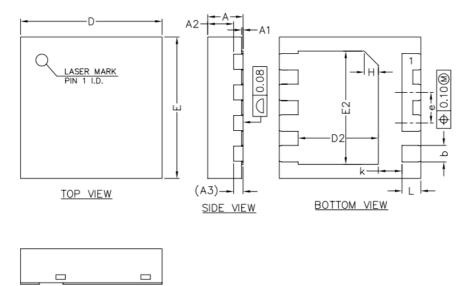
1. Package Outline Unit Description:

BSC: Basic. Represents theoretical exact dimension or dimension target.

- MIN: Minimum dimension specified.
- MAX: Maximum dimension specified.

REF: Reference. Represents dimension for reference use only. This value is not a device specification. TYP: Typical. Provided as a general value. This value is not a

device specification.


- 2. Dimensions in Millimeters.
- 3. JEDEC Outline : MS-012 AA Rev. F (Standard), MS-012 BA Rev. F (Thermal)
- 4. Dimensions "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.51mm per side.5. Dimensions "E1" does not include inter-lead flash, or protru-
- sions. Inter-lead flash and protrusions shall not exceed 0.25mm per side.

Package Information

DFN-8 3x3

SIDE VIEW

Symbols	Min.	Тур.	Max.
А	0.70 0.75 0		0.80
A1	0.00	0.02	0.05
A2	0.50	0.55	0.60
A3		0.20REF	
b	0.30 0.35 0.4		0.40
D	2.90 3.00		3.10
E	2.90 3.00		3.10
D2	1.60 1.70 1.80		1.80
E2	2.30 2.40 2.50		2.50
е	e 0.55 0.65 0.0.75		0.0.75
К	0.40	0.50	0.60
L	0.35	0.40	0.45

Notes:

1. Package Outline Unit Description:

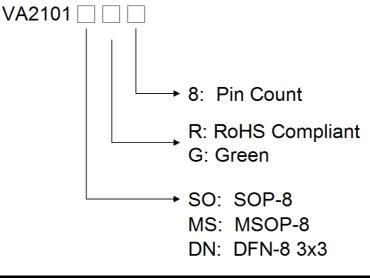
BSC: Basic. Represents theoretical exact dimension or dimension target.

- Min: Minimum dimension specified.
- Max: Maximum dimension specified.

REF: Reference. Represents dimension for reference use only. This value is not a device specification.

Typ: Typical. Provided as a general value. This value is not a device specification.

2. Dimensions in Millimeters.


3. JEDEC Outline : MO-229-V3030C-1

 Dimensions "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions and gate burrs shall not exceed 0.51mm per side.

Ordering Information

Part No.	Q`ty/Reel
VA2101SOG8	2,500
VA2101SOR8	2,500
VA2101MSG8	2,500
VA2101DNG8	2,500

Contact Information

Viva Electronics Incorporated

10F-1, No. 32, Gaotie 2nd Rd., Zhubei City, Hsinchu County, Taiwan, R.O.C. Tel: 886-3-6579508 Fax: 886-3-6579509 WWW: <u>http://www.viva-elec.com.tw</u> Sales: <u>sales@viva-elec.com.tw</u> FAE Support: <u>fae@viva-elec.com.tw</u>

IMPORTANT NOTICE

Viva Electronics Incorporated reserves the right to make changes without further notice to any products or specifications herein. Viva Electronics Incorporated does not assume any responsibility for use of any its products for any particular purpose, nor does Viva Electronics Incorporated assume any liability arising out of the application or use of any its products or circuits. Viva Electronics Incorporated does not convey any license under its patent rights or other rights nor the rights of others.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Audio Amplifiers category:

Click to view products by VIVA manufacturer:

Other Similar products are found below :

LV47002P-E MP7747DQ-LF-P AZ386MTR-E1 NCP2811AFCT1G NCP2890AFCT2G NJM8068RB1-TE1 NJW1194V-TE1 LA4282-E LA4814JA-AE LC706200CM SSM2377ACBZ-R7 FDA2100LV TDA2541 TDA7385H TDA7391LV TDA7575BPDTR TDA7718NTR IS31AP2121-LQLS1 IS31AP4915A-QFLS2-TR LA74309FA-BH 421067X 480263C NCP2820FCT2G STPA001 TDA1515AQ TDA1520B TDA1591T TDA2051H TDA4850 TDA7391PDUTR TDA7563BH TDA7718B LA4425F-E LA4742-E TDA7391PDU TDA7491MV13TR TDA749213TR TDA7563AH TDA7850H STK433-070GN-E E-TDA7391PDTR SSM2529ACBZ-R7 SSM2518CBZ-R7 MAX9890BEBL+T MAX98303EWE+T MAX98358EWL+ MAX98304DEWL+T MAX97220DETE+T TS4962MEIJT TS4990EIJT