

POE-D06-00-E-12

Ver: 12 Page: 1 / 20

PRODUCT SPECIFICATION

PRODUCT: CERAMIC DISC CAPACITOR

TYPE: 1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR

CUSTOMER:

DOC. NO.: POE-D06-00-E-12

Ver.: 12

APPROVED BY CUSTOMER

VENDOR:

■ WALSIN TECHNOLOGY CORPORATION

566-1, KAO SHI ROAD, YANG-MEI

TAO-YUAN, TAIWAN

NO.277,HONG MING ROAD,EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY

DEVELOPMENT ZONE, CHINA

MAKER: PAN OVERSEAS (GUANGZHOU) ELECTRONIC CO.,LTD.

NO.277,HONG MING ROAD,EASTERN SECTION, GUANG ZHOU ECONOMIC AND TECHNOLOGY DEVELOPMENT ZONE,CHINA

POE

POE-D06-00-E-12

Ver: 12 Page: 2 / 20

Record of change

Date	Version	Description				
2008.6.3	1	1. D19-00-E-03(before) \rightarrow POE-D06-00-E-01(1 st edition)				
2008.8.22	2	1. Revised diameter as below:				
		Before Now				
		LB202471K060* LB202471K050	*	7		
		LB202681K070* LB202681K060	*			
		2. Add last SAP code "H" for halog	en and Pb free, epoxy resin	6		
2008.12.12	3	1. Complete the 13 th to 17 th codes of	SAP P/N.	4-5		
		2. Page layout adjustment.				
		3. Add marking when the coating re	in is Halogen and Pb free Epoxy.			
2009.8.5	4	1. Change PSA & POE logo to Wals	n & POE logo.			
2011/12/21	5	Review the "LB" & "LR" to be "LB(Y	Review the "LB" & "LR" to be "LB(Y5P)" & "LR(Y5R)";			
2012/9/14	6	1. Review TCC of LR(Y5R) type.	A X Z	4,6,15		
		2. Review the condition of "life test"	图	17		
		3. Review the Item 8.1 Caution (Ra	ting)	19~20		
2012/12/27	7	1. Review the Item 8.1 Caution (Rating): Allowable conditions at high frequency				
		(Fig.2: Allowable Voltage (Sine Wave Voltage) – Frequency Characteristics (At Ambient				
		Temperature of 105°C or less))				
2013/5/6	8	1. Review the Lead diameter φ from	0.60 +/-0.06mm to 0.55+/-0.05mm	5,13		
		2. Review the "D $\Phi \leq 6.0$ mm shall be	omitted." to "DΦ≤060 shall be omitted."	10		
		3. Review the Solderability tempera	ure from $260(+5/-0)^{\circ}\mathbb{C}$ to $245\pm5^{\circ}\mathbb{C}$ solderability time			
		from 2±0.5s to 5±0.5s.	SPONKII	15		
2013/10/18	9	1. Review the packing specificati	on	11		
		Review the Available lead code	e of Lead Configuration.	5		
2016/3/3	10	2. Delete the definition about "C	ld Part No".	5-6		
		3. Review the size Dφ for the iter	n LR202681K from "070" to be "080".	8		
2017/5/4	11	1. Delete LB series products.				
2018/4/19	12	1. Add "Lead in dielectric ceran AC or 250 V DC or higher" of	ic in capacitors for a rated voltage of 125 V the 8.6 Note.	19		

POE-D06-00-E-12

Ver: 12 Page: 3 / 20

Table of Contents

No.	Item	Page
1	Part number for SAP system	4
2	Mechanical	5
3	Capacitance value vs. rated voltage, product diameter	6
4	Marking	7
5	Packing specification	8
6	Taping Format	9-10
7	Specification and test method	11-14
8	Notices	15-19
9	Drawing of Internal Structure and material list	20
	长所有 急。	
	大学生的分文	
	W/ 350	
	PASSIVE SYSTEM ALLIANCE	

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR POE-D06-00-E-12 Page: 4 / 20

1. Part number for SAP system(total eighteen code):

<u>LR</u> 102 471 <u>K</u> 050 <u>B</u> 20 <u>C</u> 5 <u>B</u> 0

● Material code: Low Dissipation Factor (LDF), Operating Temperature Range: -25°C to +125°C

Code	LR(Y5R)	
Con change	$\pm 15\%$ (-25°C to +85°C)	
Cap. change	$+ 15 \sim -30\% (+85^{\circ}\text{C to} + 125^{\circ}\text{C})$	
D.F.	≤0.2%	

2 Rated voltage (Vdc):

Voltage	1000V	2000V	3000V
Code	102	202	302

3Capacitance(pF):

Capacitors (pF)	100	470	1000	2200	3300
Code	101	471	102	222	332

4 Capacitance tolerance : $\pm 10\%$, Code is "K"

6 Nominal body diameter dimension (Ref. to page.7~9 D max. & T max. spec.).

6 Code of lead type: Please refer to Item "2. Mechanical".

Packing mode and lead's length (identified by 2-figure code)

Taping Code	Description	The limit of body size
AN	Ammo / Pitch of component:12.7 mm	Only for 1
AF	Ammo / Pitch of component:15.0 mm	
AM	Ammo / Pitch of component: 25.4 mm	

Bulk Code	Description
3E	Lead's length L: 3.5mm
04	Lead's length L: 4mm
4E	Lead's length L: 4.5mm
20	Lead's length L: 20mm

8Length tolerance

Code	Description					
A	±0.5 mm(Only for short kink lead code "D / X / H")					
В	±1.0 mm					
С	Min.					
D	Taping special purpose					

9Pitch

Code	Description			Code	Description
5	5.0±0.8mm (For Bulk)	Rated voltage		7	7.5 ±1mm
5	5.0+0.8mm-0.2mm (For Taping)	≤2000Vdc		0	10.0 ±1mm

©Epoxy Resin Code

Code	Description
В	Epoxy resin, Pb free
Н	Halogen and Pb free, epoxy resin

POE-D06-00-E-12

Ver: 12 Page: 5 / 20

2. Mechanical: Available lead code (Epoxy resin coating)- (unit: mm)

2. Mechanical:		4	Available lead co	ode (Epoxy 1	resin coating)- (unit: mm)
Lead code	SAP P/N (13-17)digits	Pitch (F)	Lead Length(L)	Packing	Lead Configuration
Lead style: B	B20C5	5.0±0.8	20 MIN.		D max. T max.
Straight long	B20C7	7.5±1.0	20 MIN.	Bulk	
lead	B20C0	10±1.0	20 MIN.		
	BAND5	5.0+0.8-0.2			
	BAFD7	7.5 ± 1.0	Taping Spec.		•
	BAMD0	10±1.0	(Ref.to page.12)	Tap. Ammo	
Lead style: L	L04B5	5.0±0.8	4.0 ± 1.0		D max. T max.
Straight short	L03B7	7.5 ± 1.0	3.0 ± 1.0		
lead	L4EB7	7.5 ± 1.0	4.5 ± 1.0		
	L05B7	7.5 ± 1.0	5.0 ± 1.0		()
	L10B7	7.5 ± 1.0	10.0 ± 1.0	Bulk	
	L03B0	10 ± 1.0	3.0 ± 1.0		* + F + T
	L4EB0	10 ± 1.0	4.5 ± 1.0		
	L05B0	10 ± 1.0	5.0 ± 1.0		ød_ _
	L10B0	10 ± 1.0	10.0 ± 1.0		<u> п п т </u> п п
Lead style: D	D04A5	5.0±0.8	4.0 ± 0.5		D max. T max
Vertical kink lead	D3EA7	7.5 ± 1.0	3.5 ± 0.5		
	D04A7	7.5 ± 1.0	4.0 ± 0.5	Bulk	V Y
	D3EA0	10 ± 1.0	3.5 ± 0.5	21	\
	D04A0	10 ± 1.0	4.0 ± 0.5	(F)	4.0max
	DAND5	5.0+0.8-0.2		1 513	F - 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1
	DAFD7	7.5 ± 1.0	Taping Spec.	Tap. Ammo	Ø d+ + L Ød
	DAMD0	10 ± 1.0	(Ref.to page.12)	411	0 <u>1</u> 0-
Lead style: X	X04A5	5.0±0.8	4.0 ± 0.5	-	250
Outside kink lead		7.5 ± 1.0	3.5 ± 0.5		D max. T max.
	X04A7	7.5 ± 1.0	4.0 ± 0.5		
	X05B7	7.5 ± 1.0	5.0 ± 1.0	Bulk	()
	X3EA0	40 ± 1.0	3.5 ± 0.5		
	X04A0	10 ± 1.0	4.0 ± 0.5	SH3.	5.00 max.
	X05B0	10 ± 1.0	5.0 ± 1.0		
	XAFD7	7.5 ± 1.0	Taping Spec (Ref.to	Tap. Ammo	ød
	XAMD0	10 ± 1.0	page.12)	1 	232
Lead style: H	H04A5	5.0±0.8	4.0 ± 0.5		D max. T max.
Inside kink lead	H04A7	7.5 ± 1.0	4.0 ± 0.5	Bulk	
	H04A0	10 ± 1.0	4.0 ± 0.5		()
	H4EB0	10 ± 1.0	4.5 ± 1.0		×+\> \ \
	HAND5 HAFD7	5.0+0.8-0.2 7.5 ± 1.0	Taping Spec.		% The F
			(Ref.to page.12)	Tap. Ammo	
	HAMD0	10 ± 1.0	10,		[ød→[- <u> </u> - [
Lead style: M Double Outside Kink Lead	M04A5	5.0±0.8	4.0 ± 0.5		D max.
	M04A7	7.5 ± 1.0	4.0 ± 0.5	Bulk	5.0 max.
	M04A0	10 ± 1.0	4.0 ± 0.5		Fød-

[※] Lead type − Inside kink lead is not available for 2KV & 3 KV, and Pitch 5.0mm is not available for 3KV.

[%] Lead diameter ϕ = 0.55+/-0.05 mm

[※]e (Coating extension on leads): 3.0mmMax for straight lead style, not exceed the kink for kink lead.

[₩]When Dφ≥11mm, only for bulk, but Dφ≤10mm can do Bulk or Taping.

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR POE-D06-00-E-12

Ver: 12 Page: 6 / 20

3. Capacitance value vs. rated voltage, product diameter:

3.1 LR Series:

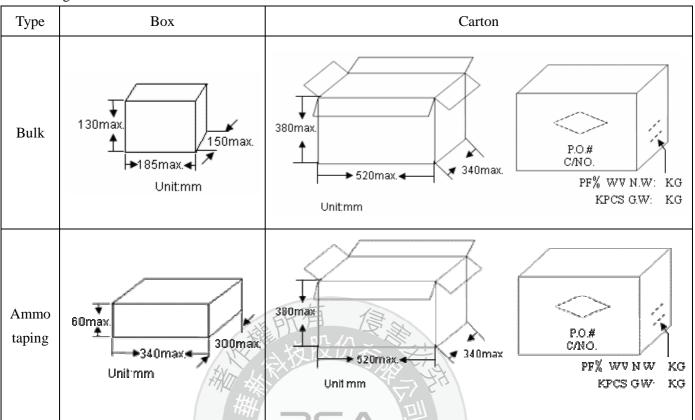
Part Number	Rated Volt.	Cap. in pF	Cap. Tol.(%)	Dimensions in mm	
Fait Number	Raieu voit.	Cap. III pr	Cap. 101.(%)	D max.	T max.
LR102101K050	1000VDC	100	±10%	6.5	4.5
LR102151K050	1000VDC	150	±10%	6.5	4.5
LR102221K050	1000VDC	220	±10%	6.5	4.5
LR102271K050	1000VDC	270	±10%	6.5	4.5
LR102331K050	1000VDC	330	±10%	6.5	4.5
LR102391K050	1000VDC	390	±10%	6.5	4.5
LR102471K050	1000VDC	470	±10%	6.5	4.5
LR102561K060	1000VDC	560	±10%	7.5	4.5
LR102681K060	1000VDC	680	±10%	7.5	4.5
LR102821K070	1000VDC	820	±10%	8.5	4.5
LR102102K070	1000VDC	1000	±10%	8.5	4.5
LR102152K090	1000VDC	1500	±10%	10.5	4.5
LR102222K100	1000VDC	2200	±10%	11.5	4.5
LR102332K130	1000VDC	3300	±10%	14.5	4.5
LR202101K050	2000VDC	有100 亿	±10%	6.5	5.0
LR202151K050	2000VDC	150	±10%	6.5	5.0
LR202221K050	2000VDC	> \220 - >	±10%	6.5	5.0
LR202271K050	2000VDC	270	±10%	6.5	5.0
LR202331K060	2000VDC	330	±10%	7.5	5.0
LR202391K060	2000VDC	390	±10%	7.5	5.0
LR202471K060	2000VDC	470	±10%	7.5	5.0
LR202561K070	2000VDC	560	±10%	8.5	5.0
LR202681K080	2000VDC	680	±10%	9.5	5.0
LR202821K080	2000VDC	820	±10%	9.5	5.0
LR202102K090	2000VDC	1000	±10%	10.5	5.0
LR202122K100	2000VDC	1200	±10%	11.5	5.0
LR202152K110	2000VDC	2n_1500	±10%	12.5	5.0
LR202182K120	2000VDC	1800	±10%	13.5	5.0
LR202222K130	2000VDC	740622007 UNA	±10%	14.5	5.0
LR202332K160	2000VDC	3300	±10%	17.5	5.0
LR302101K050	3000VDC	100	±10%	6.5	6.0
LR302151K050	3000VDC	150	±10%	6.5	6.0
LR302221K050	3000VDC	220	±10%	6.5	6.0
LR302331K060	3000VDC	330	±10%	7.5	6.0
LR302391K070	3000VDC	390	±10%	8.5	6.0
LR302471K080	3000VDC	470	±10%	9.5	6.0
LR302561K080	3000VDC	560	±10%	9.5	6.0
LR302681K090	3000VDC	680	±10%	10.5	6.0
LR302821K100	3000VDC	820	±10%	11.5	6.0
LR302102K100	3000VDC	1000	±10%	11.5	6.0
LR302152K130	3000VDC	1500	±10%	14.5	6.0
LR302222K150	3000VDC	2200	±10%	16.5	6.0

POE-D06-00-E-12

Ver: 12 Page: 7 / 20

4. Marking:

T. Mai King.					
Temp. Char.	LR				
Marking Nominal body diameter	(2) 102K (4) (4) (5) (5)				
(1). Temp. char. and D.F.	Cap. change: $\pm 15\%(-25^{\circ}\text{C to } +85^{\circ}\text{C})$ +15~-30%(+85°C to+125°C)				
	D.F.: 0.2% Max.				
(2) Naminal agracitance	Identified by 3-Figure Code.				
(2). Nominal capacitance	Ex. 100pf→"101", 1000 Pf→"102"				
	1000V Marked with code (In case of DC 1000V marked with 1KV)				
(3). Rated voltage	2000V Marked with code (In case of DC 2000V marked with 2KV)				
	3000V Marked with code (In case of DC 3000V marked with 3KV)				
(4). Capacitance tolerance	K=±10% 后 有				
(5). Manufacturer's identification	n Shall be marked as "♥", but DΦ≤060 shall be omitted.				
(6). Halogen and Pb free	When the epoxy resin is Halogen and Pb free, there is a "_"marking.				



POE-D06-00-E-12

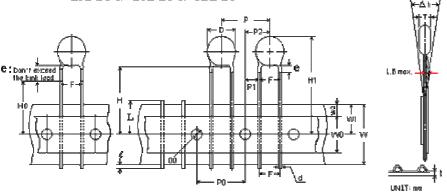
Ver: 12 Page: 8 / 20

5. Packing Baggage:

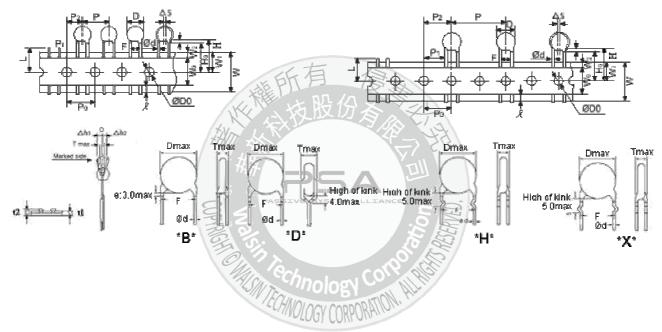
5.1 Packing size:

5.2 Packing quantity:

Packing Type		The code of 14th to15th in SAP P/N	MPQ (Kpc	s/Box)
		AN	1.5	
Taping		AF CORPORANCE	1	
		AM	0.5	
Do alsin a Tsur a	Lead	Size code of 10th to 12th in SAP P/N	MDO (Vnag/Dag)	Vmas/Dan
Packing Type	length	Size code of 10th to 12th in SAP P/N	MPQ (Kpcs/Bag)	Kpcs/Box
	Long lead	050~100	1	2
	(L≧	110~120	0.5	1.5
	16mm)	130~170	0.5	1
Bulk		050~060	1	6
DUIK	Short lead	070~080	1	4
	(L<	090~100	1	3
	16mm)	110~140	1	2
		150~160	0.5	1



POE-D06-00-E-12


Ver: 12 Page: 9 / 20

6. Taping Specifications:

 12.7mm pitch/lead spacing 5.0mm taping Lead code: *BAND5 & *DAND5 & *HAND5

- 15mm pitch/lead spacing 7.5mm taping
 Lead code: *BAFD7 & *DAFD7 & *HAFD7 & *XAFD7
- 25.4mm pitch/lead spacing 10.0mm taping
 Lead code: *DAMDO & *XAMDO & *HAMDO & *BAMDO

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
, ,	POE-D06-00-E-12	
	102 200 00 2 12	20

POE Part Number		*BAND5 *D AND5 *H AND5	*BAFD7 *DAFD7 *HAFD7 *XAFD7	*BAMD0 *DAMD0 *HAMD0 *XAMD0		
Item	Symbol	Dimensions (mm)	Dimensions (mm)	Dimensions (mm)		
Pitch of component	P	12.7±1.0	15.0±1.0	25.4±2		
Pitch of sprocket	P0	12.7±0.3	15.0±0.3	12.7±0.3		
Lead spacing	F	5.0+0.8-0.2	7.5±1.0	10.0±1.0		
Length from hole center to component center	P2	6.35±1.3	7.5±1.5	12.7 ± 1.5		
Length from hole center to lead	P1	3.75±0.7	3.75±1.0	7.7±1.5		
Body diameter	D	See the "3. Capacitance	value vs. Rate voltage	e, product diameter"		
Deviation along tape, left or right	△S		0±	2.0		
Carrier tape width	W		18.0 +1/-0.5			
Position of sprocket hole	W1		9.0±0.5			
Lead distance between the kink and center of sprocket hole	НО	16.0±0.5 For: *DAND5 *HAND5 *XAND5	18.0+2/-0 For: *DAFD7 *HAFD7 *XAFD7	18.0+2/-0 For: *DAMD0 *HAMD0 *XAMD0		
Lead distance between the bottom of body and the center of sprocket hole	H	20.0+1.5/-1.0 For: *BAND5	20.0+1.5/-1.0 For: *BAFD7	20.0+1.5/-1.0 For: *BAMD0		
Component Height	MY	、	32.25Max			
Lead-Wire Protrusion length	HVI .	2.0Max (Or the en	nd of lead wire may be in	side the tape.)		
Diameter of sprocket hole	77/ D 0 %		4.0±0.2			
Lead diameter	φd		0.55 ± 0.05			
Total tape thickness	t1	PSA 1	0.6±0.3			
Total thickness, tape and lead wire	\approx t2 =	ASSIVE SYSTEM ALLIANCE	1.5 max.			
Deviation across tape	∆h	2.0 max.				
Portion to cut in case of defect	P.Lo.	31.0 max.				
Hole-down tape width	W0	200	8.0min			
Hole-down tape distortion	W2/C/	chnology co	1.5±1.5			
Coating extension on leads	e	3.0 max for straight lead style; Not exceed the kink leads for kink lead.				
Body thickness	T	See the "3. Capacitance	value vs. Rate voltage	e, product diameter"		

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
, , ,	POE-D06-00-E-12	Page: 11 /
		20

7. Specification and test method:

- 7.1 Scope: This specification applies to Low Dissipation Ceramic Disc Capacitor.
- 7.2 Test Conditions:

Unless otherwise specified, all tests shall be operated at the standard test conditions of temperature 5° C to 35° C and relative humidity 45% to 85%.

When fails a test, retest be operated at the conditions of temperature $25^{\circ}\text{C} \pm 2^{\circ}\text{C}$, relative humidity of 60% to 70% and barometric pressure 860 to 1060 mbar.

- 7.3 Handle procedure: to avoid unexpected testing results from occurring, the tested capacitor must be kept at room condition for at least 30 minutes and completely discharged.
- 7.4 Applications: Ideal for use on high frequency pulse circuits such as a horizontal resonance circuit for CTV and snubber circuits for switching power supplies.

7.5 Test items:

ITEM	POST-TEST REQUIREMENTS	TESTING PROCEDURE				
Operating Temperature Range	-25 To +125°C (Including capacitor's self-heating temperature 20°C Max)					
Appearance Structure size	No abnormalities	As stated in section 3.				
Marking	To be easily legible.	As stated in section 4				
	Between Lead Wire No failure	The capacitor should not be damaged when DC voltage of 200% of the rated voltage (DC1 to 3KV) is applied between the lead wires for 1 to 5 sec. (Charge/Discharge current ≤50mA.)				
		First, the terminals of the capacitor should be connected together. Then, as shown in				
Dielectric Strength	CONNOCATION OF THE PROPERTY OF	figure at right, a metal foil should be closely wrapped around the body of the Metal Foil 3 to 4mm Metal Foil Metal Metal Foil Metal				
	Body Insulation: No failure	capacitor to the distance of				
	CONVOLOGY CO	about 3 to 4mm from each terminal. Then, the capacitor				
		should be inserted into a container filled with metal balls of				
		about 1mm diameter. Finally, AC1250Vrms <50/60Hz> is				
		applied for 1 to 5 sec. between the capacitor lead wires and				
		metal balls.				
		(Charge/Discharge current \leq 50mA.)				
Insulation Resistance	10000 M Ω min.	Insulation resistance should be measured at 60±5 seconds after applied voltage ((DC500V)				
Capacitance	Tolerance: K: ±10%	Testing Frequency: 1 KHz ± 20% Testing Voltage: 1.0 Vrms				
Dissipation Factor (D.F.)	LR: 0.2% Max.	The dissipation factor should be measured at 25° C with 1 ± 0.2 KHz and 1.0 Vrms Max.				

[&]quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12	İ
	POE-D06-00-E-12	Page: 12 /	l
		20	ĺ

Item	Po	st-Test	Requ	uirements	Te	sting]	Proce	dure	
	T.C.	Temp. Char			According to step when temperature be calculated on	e reach	nes bala lowing	nce and formula	l CAP.	
		-25 to -	+85°C	+85 to +125°C	CAP. change =(C	C2-C1): 1	$\times 100\%$	C1 3	4	5
Temperature Characteristic	LR	R Within ±15% Within +15%/-30%		LR Temp. (°C) Note: C1 = Capa C2 = Capacitance T1 = Temperature T2 = Temperature	25±2 citance e as ste e as ste	-25±3 e as step ep 2 or 4 p 3	25±2 3	125±2		
Strength of Lead	Pull:		be cut		As shown in the fi body of the capaci weight gradually t radial direction of (5N for lead diame for 10±1 sec.	tor and o each the ca	d apply lead wi pacitor	a tensil ire in th up to 1	ne ON	w
	Bendi	ng:	Capacitor should not be broken.		Each lead wire should be subjected to 5N (2.5N for lead diameter 0.5mm) of weight and bent 90° at the point of egress, in one direction, then returned to its original position and bent 90° in the opposite direction at the rate of one bend in 2 to 3 sec.					
Vibration Resistance	No ab	nrance: normaliti itance: n specifie	8 4	PS	The capacitor should be firmly soldered to the supporting lead wire and vibrated at a frequency range of 10 to 55Hz, 1.5mm in total amplitude, with about a 1minute rate of vibration change from 10Hz to 55Hz and back to 10Hz. apply for a total of 6 hrs., 2hrs. each in 3 mutually perpendicular directions.					
resistance	D.F. :	0.2% Ma	9	ance.						
Solder ability Of Leads	Lead vunifor		old be s g on the	of the	The lead wire of ethanol solution of solder of 245±5° of dipping is up t lead wires.	of 25w C for 5	t% rosi ±0.5 se	n and tl c. In bo	nen into oth cases	molten s the depth
	Appea	Appearance: No marked defect. root			The lead wire sho root of lead wires (A) Body Dia. ≦	s.		-		
Soldering Effect	_	itance Cl n ±10%	nange :		temperature: (B) Body Dia. > temperature Then leave at sta	260(+ 6.0mm 260(+5	$(5/-0)^{\circ}$: Into the following the follo	for 3.0 ne molt for 5~1	±0.5 se en solde 0 secon	econds. er of which nds.
	Dielectric Strength (between Lead Wires): Per. Item Dielectric Strength			then measured.					lowing page.)	

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12	l
	POE-D06-00-E-12	Page: 13 /	l
		20	l

Item	Post-Test Requirements		Testing	Procedure	
	Appearance: No marked defect.		n soldering capacitor vormed in following co	with a soldering iron, it should	
	Capacitance Change:		rature of iron-tip: 350~		
	Within ±10%		ng iron wattage: 50w		
			g time: 3.5 sec. Max.		
Caldania a Effect		Capacito	or should be stored at 1	25±3°C for 1 hr., then placed	
Soldering Effect	Dielectric Strength (between Lead			rs. before initial measurements.	
	Wires): Per. Item Dielectric	Post-trea	itment:		
	Strength	Capacito	or should be stored for	24±2 hrs. at *room condition.	
	Strength		ment order:		
		Dielectri	c strength -> Pre-treat	ment -> Capacitance ->	
		Solderin	g effect test -> Post-tre	eatment ->	
		Capacita	nce		
	Appearance:	The capa	acitor should be subjec	eted to 5 temperature cycles.	
	No Abnormalities	<tempe< td=""><td>rature cycle></td><td></td></tempe<>	rature cycle>		
		Step	Temperature($^{\circ}\mathbb{C}$)	Time (min)	
	Cap. Change:	1	-25±3	30	
	Within ±10%	2	25±2	3	
	D.F.: LR: 0.6% max.	3/8	125±3	30	
		//4	25±2	3	
	TY A TO I	Pre-treat	ment:		
	the state of the s	Capaci	tor should be stored at	t 125±3°C for 1 hr., then placed	
Temperature Cycle	H1/11 25	at *1room condition for 24±2 hrs. before initial			
	推	measu	rements.		
		Post-trea	itment:		
	Insulation Resistance:	Ca	pacitor should be store	ed for 24±2 hrs. at *room	
	$1000 \mathrm{M}\Omega$ Min.	SIEM ALL.	ndition.		
	3 2	Measure	ment order:		
				Pre-treatment -> Capacitance •	
	College Colleg			est -> Post-treatment ->	
	7/SW CONDO		tance • D.F. • I.R. • D		
	Appearance:		All May	0 hrs. at 40±2°C in 90 to 95%	
	No Abnormalities	relative h		5 ms. at 10=2 6 m 56 to 5576	
	Cap. Change:	Pre-treat	•		
	1 -			125±3°C for 1 hr., then	
	Within ±10%			or 24±2 hrs. before initial	
Unmidity	D.F. :	-	ements.		
Humidity (Under Steady State)	LR: 0.6% max.	Post-trea			
(Under Steady State)			or should be stored fo	r 1 to 2 hrs. at *room	
		condition		1 1 to 2 ms. at 100m	
	Insulation Resistance: $1000M\Omega$ Min.		ment order:		
	100011111111111111111111111111111111111	I.R>	Pre-treatment -> Capa	citance • D.F> Humidity	
			ost-treatment -> Capa		

^{*} "room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12	l
	POE-D06-00-E-12	Page: 14 /	l
		20	l

Item	Post-Test Requirements	Testing Procedure
	Appearance: No Abnormalities	Apply the rated voltage for 500 +24/-0 hrs. at 40±2°C in 90 to 95% relative humidity. (Charge/Discharge current<50mA.)
	Cap. Change: Within ±10%	Pre-treatment: Capacitor should be stored at 125±3°C for 1 hr., then placed
	D.F.: LR: 0.6% max.	at *1room condition for 24±2 hrs. before initial measurements. Post-treatment:
Humidity Loading		Capacitor should be stored for 1 to 2 hrs. at *1 room condition.
		Post-treatment:
	Insulation Resistance: $500M\Omega$ Min.	Capacitor should be stored at 125±3°C for 1 hr., then placed at *1 room condition for 24±2 hrs.
		Measurement order:
		I.R> Pre-treatment -> Capacitance • D.F> Humidity loading test -> *2 I.R> Post-treatment -> Capacitance • D.F.
	Appearance: No Abnormalities Cap. Change: Within ±10%	Apply a DC voltage of 150% of the rated voltage (DC1kV to 3kV) for 1000 +48/-0 hrs. at 125±2°C with a relative humidity of 50% max. (Charge/Discharge currentV50mA.) Pre-treatment:
Life	D.F.: LR: 0.6% max.	Capacitor should be stored at 125±3°C for 1 hr., then placed at *1room condition for 24±2 hrs. before initial
Life	S PASSIVE	Post-treatment:
	Insulation Resistance: LR: 2000MΩ Min.	Capacitor should be stored at 125±3°C for 1 hr., then placed at *1room condition for 24±2 hrs.
	A/Cu.ech	Measurement order:
	TECHNO	I.R> Pre-treatment -> Capacitance • D.F> Life test ->*3 I.R> Post-treatment -> Capacitance • D.F.

^{*1 &}quot;room condition" Temperature: 15 to 35 °C, Relative humidity: 45 to 75 %, Atmospheric pressure: 86 to 106 kPa

^{*2} The measurement of I.R. will be held in 1 to 2 hrs. after Humidity loading test.

^{*3} The measurement of I.R. will be held in 12 to 24 hrs. after Life test.

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
	POE-D06-00-E-12	Page: 15 /
		20

8. Notices:

8.1 Caution (Rating)

I. Operating Voltage

When dc-rated capacitors are to be used in ac or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains dc bias within the rated voltage range.

When the voltage is applied to the circuit, starting or stopping may generate irregular voltage for a transit period because of resonance or switching. Be sure to use a capacitor with a rated voltage range that includes these irregular voltages.

When using the low-dissipation (LR Char.) series in a high-frequency and high-voltage circuit, be sure to read the instructions in item 4.

Voltage	DC Voltage	DC+AC Voltage	AC Voltage	Pulse Voltage (1)	Pulse Voltage (2)
Positional measurement	Vo-p	Vo-p	Vp-p	Vp-p	Vp-p

II. Operating Temperature And Self-Generated Heat

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. be sure to take into account the heat generated by the capacitor itself. When the capacitor is used in a high frequency current, pulse current or similar current, it may self-generate heat due to dielectric loss. The applied voltage load (*) should be such that the capacitor's self-generated heat is within 15°c at an atmosphere temperature of 25°c. When measuring, use a thermocouple of small thermal capacity-k of Ø0.1mm in conditions where the capacitor is not affected by radiant heat from other components or surrounding ambient fluctuations.

Excessive heat may lead to deterioration of the capacitor's characteristics and reliability. (Never attempt to perform measurement with the cooling fan running. otherwise, accurate measurement cannot be ensured.)

III. Fail-Safe

When capacitor is broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

IV. Load Reduction and Self-generated Heat During

Application of High-frequency and High-voltage

Due to the low self-heating characteristics of low dissipation capacitors, the allowable electric power of these capacitors is generally much higher than that of B characteristic capacitors. However, in case the self heating temperature is 15°C under a high-frequency voltage whose peak-to-peak value equals the capacitor's rated voltage, the capacitor's power consumption may exceed it's allowable electric power.

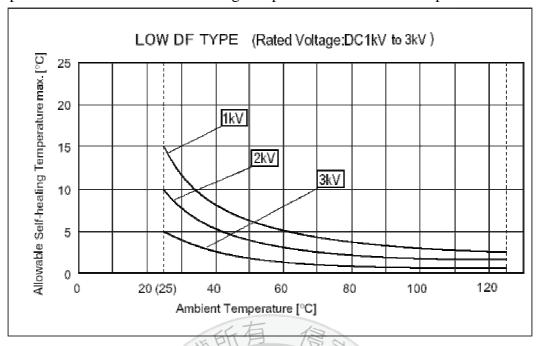
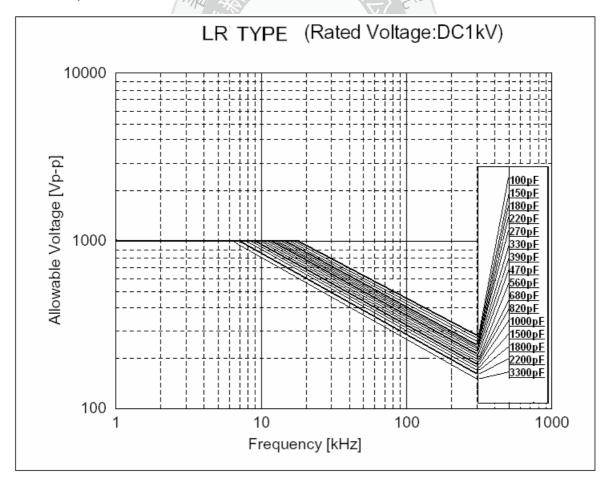
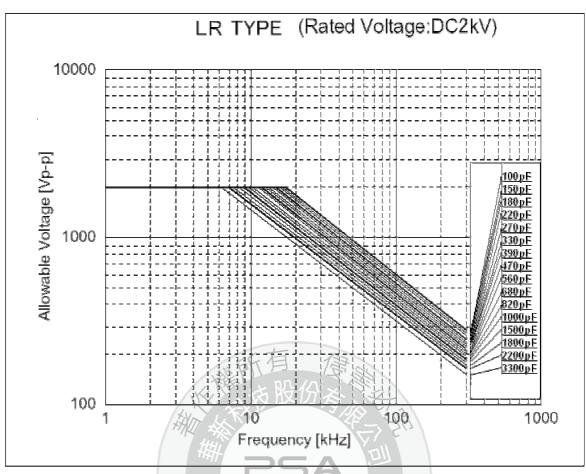
Allowable conditions at high frequency:

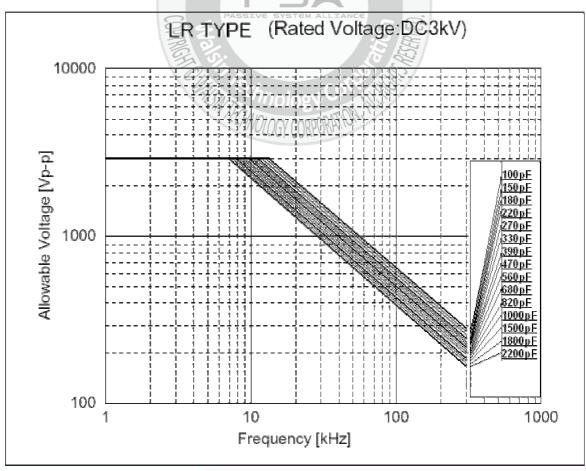
- *1 Fig. 1 show the dependence of allowable self-heating temperature on ambient temperature. When the ambient temperature is 85 to 125°C, the applied voltage needs to be further reduced.
- *2 Fig. 2 shows reference data on the allowable voltage-frequency characteristic for a sine wave voltage when the ambient temperature is 105°C or less.

Failure to follow the above cautions (items 1to 4) may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
	POE-D06-00-E-12	Page: 16 /
		20

Fig 1: Dependence of Allowable Self-heating Temperature on Ambient Temperature.


Fig 2 : Allowable Voltage (Sine Wave Voltage) – Frequency Characteristics (At Ambient Temperature of 105°C or less)

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR
POE-D06-00-E-12
Page: 17 / 20

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12	
	POE-D06-00-E-12	Page: 18 /	1
		20	i

Because of influence of harmonics, when the applied voltage is a rectangular wave or pulse wave voltage (instead of a sine wave voltage), the heat generated by the capacitor is higher than the value obtained by application of the sine wave with the same fundamental frequency.

Roughly calculated for reference, the allowable voltage for a rectangular wave or pulse wave corresponds approximately to the allowable voltage for a sine wave whose fundamental frequency is twice as large as that of the rectangular wave or pulse wave. This allowable voltage, however, varies depending on the voltage and current waveforms.

8.2 Storage and Operating Condition:

Operating And Storage Environment

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to Moisture. Before cleaning, bonding or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed –10 to 40 degrees centigrade and 15 to 85 % for 6 months maximum and use within the period after receiving the capacitors.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

8.3 Soldering and Mounting:

I. Vibration And Impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

II. Soldering

When soldering this product to a Pcb / Pwb, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element. When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C Max. Soldering iron wattage: 50W Max. Soldering time: 3.5 sec. Max.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

8.4 Cleaning (ultrasonic cleaning):

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: output of 20-watts per liter or less.

Rinsing time: 5 min. Maximum. Do not vibrate the Pcb/Pwb directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

8.5 Caution (Handling)

Vibration And Impact

Do not expose a capacitor or its leads to excessive shock or vibration during use.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

	1	** 10
1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
	POE-D06-00-E-12	Page: 19 /
		20

8.6 Note


7(c)-II	Lead in dielectric ceramic in	Does not apply to applications covered by point
	capacitors for a rated voltage of	7(c)-I and 7(c)-IV of this Annex.
	125 V AC or 250 V DC or higher	Expires on:
		-21 July 2021 for categories 1-7 and 10;
		-21 July 2021 for categories 8 and 9 other
		than in vitro diagnostic medical devices and
		industrial monitoring and control
		instruments;
		-21 July 2023 for category 8 in vitro
		diagnostic medical devices;
		-21 July 2024 for category 9 industrial
		monitoring and control instruments, and for
		category 11."
	KA	19

1KV, 2KV, 3KV LOW DISSIPATION CERAMIC DISC CAPACITOR		Ver: 12
	POE-D06-00-E-12	Page: 20 /
		20

9. Drawing of Internal Structure and material list: (LR)

Remarks:

No.	Part name	Material	Model/Type	Component
1	Insulation Coating	96	1.EF-150 ALLIANCE 2.PCE-210 3.PCE-300	Epoxy resin、Pigment (Blue / UL 94 V-0 /)
2	Dielectric Element	Ceramic CC	nology5RO	BaTiO ₃
3	Solder	Tin-silver	Sn97.5-Ag2.5	Sn97.5-Ag2.5
4	Electrodes	Ag	1.SP-160PL 2.SP-260PL	Silver · Glass frit
5	Leads wire	Tinned copper clad steel wire	0.55+/-0.05mm	Substrate metal: Fe & Cu Surface plating: Sn 100%(3~7μm)

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Ceramic Disc Capacitors category:

Click to view products by Walsin manufacturer:

Other Similar products are found below:

5AU100JCECA DEF2CLH020CA3B DEF2CLH030CJ3B 101GHR102K NCD103Z50Z5VTRF NCD220K1KVSLF
NCD103M1KVZ5UJTBF F471K39S3NR63K7R DEF2CLH040CN3A DEF2CLH080DA3B 564R3DF0T22 C1210N561J102T 8903D0
90410-10 0838-040-X7R0-220K SL102101J060BAND5P JN102MQ35FAAAAKPLP 0841-040-X5U0-103M ZU501103M090B20C6P
ZU102103M100X05B0P SL102181J070HAND5P SL102151J070HAND5P ZU501102M050B20C6P SL500180J040B20C2P
ZU102103M100B20C0P F121K25S3NN63J5R F121K25S3NP63K7R F121K25S3NR63K7R F122K47S3NP63K7R F151K29S3NR63K7R
F222K47S3NN63J7R F681K43S3NR63K7R HVCC103Y6P152MEAX F681K29S3NN63J5R S103Z43Y5VN6TJ5R
TCC0805X7R472K501FT C947U392MZVDBA7317 CCK-22N CCK-2P2 CCK-4P7 RDE5C1H102J0ZAH03P CCK-470P
564R30GAD10KA 25YD22-R DHS4E4G141MCXB DEJF3E2472ZB3B DEA1X3F390JC3B DEA1X3F150JP3A DEA1X3D391JA3B
DEA1X3D330JC1B