

APPROVAL SHEET

RBBPF Series - 2012(0805)- RoHS Compliance

MULTILAYER CERAMIC BAND PASS FILTER

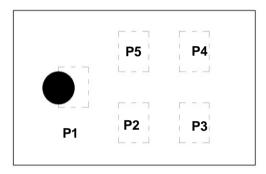
Halogens Free Product

2.4 GHz ISM Band RF Application

P/N: RBBPF2010A108Q1C

*Contents in this sheet are subject to change without prior notice.

FEATURES


- 1. Miniature footprint: 2.0 X 1.25 X 1.0 mm³
- 2. Low Profile Thickness
- 3. High Rejection
- 4. LTCC process

APPLICATIONS

- 1. ISM band 2.4GHz working frequency
- 2. Bluetooth, Wireless LAN 802.11b/g/n, HomeRF

CONSTRUCTION

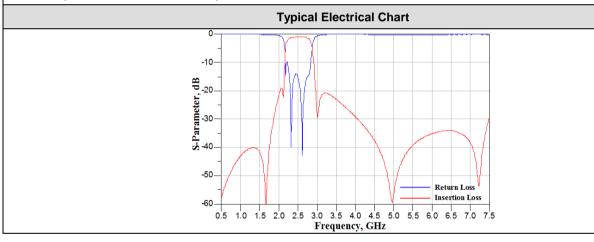
Top view

PIN	Connection	
1	Input port	
2	GND	
3	GND	
4	Output port	
5	GND	

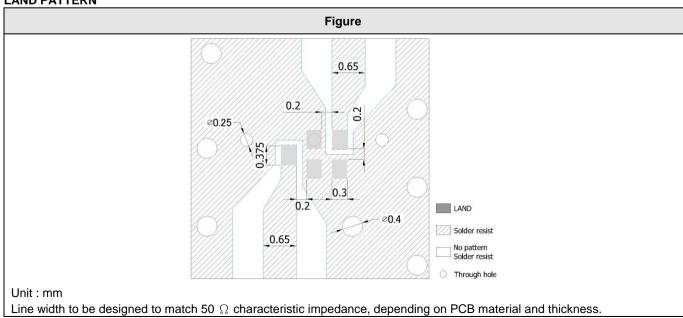
DIMENSIONS

Figure		Symbol	Dimension (mm)
	L L		2.00 ± 0.20
	4	W	1.25 ± 0.20
Top view	Top view Top view	Т	1.00 max
-		А	0.325 ± 0.10
		В	0.375 ± 0.10
	Side view	С	0.25 ± 0.10
Side view	TT	D	0.25 ± 0.10
	E	0.25 ± 0.10	
	▼ ■ ■ ±	F	0.25 ± 0.10
Bottom view		G	0.25 ± 0.10
	BCDEFG	Н	0.25 ± 0.10
		I	0.175 ± 0.10

ELECTRICAL CHARACTERISTICS


RBBPF2010A108Q1C	Specification	
Frequency range	2400 ~ 2500 MHz	
Insertion Loss	1.3 dB max. at +25°C	
Insertion Loss	1.5 dB max. at -40°C ~ +85°C	
	38 dB min. @ 50 ~ 960MHz	
	17 dB min. @ 1710 ~ 1990 MHz	
Attenuation	5 dB min. @ 3200 MHz	
	30 dB min. @ 4800 ~ 5000 MHz	
	25 dB min. @ 7200 ~ 7500 MHz	
VSWR	2.0 max.	
Impedance	50 Ω	
Power Capacity	2W max.	
Moisture sensitivity levels	MSL is LEVEL 1 (Refer to : IPC/JEDEC J-STD-020)	

Operating & Storage Condition (Component)


Operation Temperature Range: -40° C $\sim +85^{\circ}$ C Storage Temperature Range: -40° C $\sim +85^{\circ}$ C

Storage Condition before Soldering (Included packaging material)

Storage Temperature Range: $+5 \sim +40$ °C Humidity: 30 to 70% relative humidity

LAND PATTERN

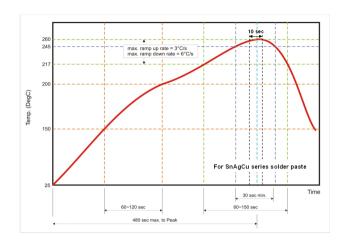
RELIABILITY TEST

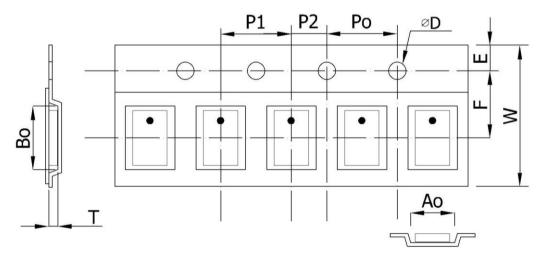
Test item	Test condition / Test method	Specification
Solderability	*Solder bath temperature : $235 \pm 5^{\circ}$ C	At least 95% of a surface of each terminal
JIS C 0050-4.6	*Immersion time : 2 ± 0.5 sec	electrode must be covered by fresh solder.
JESD22-B102D	Solder : Sn3Ag0.5Cu for lead-free	
Leaching	*Solder bath temperature : 260 ± 5°C	Loss of metallization on the edges of each
(Resistance to	*Leaching immersion time : 30 ± 0.5 sec	electrode shall not exceed 25%.
dissolution of	Solder : SN63A	
metallization)		
IEC 60068-2-58		
Resistance to soldering heat	*Preheating temperature : 120~150℃,	No mechanical damage.
JIS C 0050-5.4	1 minute.	Electrical specification shall satisfy the
	*Solder temperature: 270±5°C	descriptions in electrical characteristics under
	*Immersion time: 10±1 sec	the operational temperature range within -40
	0-14-7 1 0-24-70 50-70-71-71	~ 85°C.
	Solder : Sn3Ag0.5Cu for lead-free	Loss of metallization on the edges of each
	Measurement to be made after keeping at	electrode shall not exceed 25%.
	room temperature for 24±2 hrs	
Drop Test	*Height: 75 cm	No mechanical damage.
JIS C 0044	*Test Surface : Rigid surface of concrete or	Electrical specification shall satisfy the
Customer's specification.	steel.	descriptions in electrical characteristics under
	*Times: 6 surfaces for each units; 2 times	the operational temperature range within -40
	for each side.	~ 85°C.
	ioi each side.	
Vibration	*Frequency: 10Hz~55Hz~10Hz(1min)	No mechanical damage.
JIS C 0040	*Total amplitude: 1.5mm	Electrical specification shall satisfy the
	*Test times : 6hrs.(Two hrs each in three	descriptions in electrical characteristics under
	mutually perpendicular directions)	the operational temperature range within -40
	, , ,	~ 85°C.
Adhesive Strength	*Pressurizing force :	No remarkable damage or removal of the
of Termination	5N (LGA terminal series) ; 5N(≦0603) ;	termination.
JIS C 0051- 7.4.3	10N(>0603)	terriiriatiori.
	*Test time: 10±1 sec	
Bending test		
JIS C 0051- 7.4.1	The middle part of substrate shall be	No mechanical damage.
0.5 0 0001- 7.4.1	pressurized by means of the pressurizing rod	Electrical specification shall satisfy the
	at a rate of about 1 mm/s per second until the	descriptions in electrical characteristics under
	deflection becomes 1mm/s and then pressure	the operational temperature range within -40
	shall be maintained for 5±1 sec.	~ 85°C.
	Measurement to be made after keeping at	
	room temperature for 24±2 hours	

Approvar street		
Temperature cycle JIS C 0025	 30±3 minutes at -40°C±3°C, 10~15 minutes at room temperature, 30±3 minutes at +85°C±3°C, 10~15 minutes at room temperature, Total 100 continuous cycles Measurement to be made after keeping at room temperature for 24±2 hrs 	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.
High temperature JIS C 0021	*Temperature: 85°C±2°C *Test duration: 1000+24/-0 hours Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.
Humidity (steady conditions) JIS C 0022	*Humidity: 90% to 95% R.H. *Temperature: 40±2°C *Time: 1000+24/-0 hrs. Measurement to be made after keeping at room temperature for 24±2 hrs % 500hrs measuring the first data then 1000hrs data	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.
Low temperature JIS C 0020	*Temperature : -40°C±2°C *Test duration : 1000+24/-0 hours Measurement to be made after keeping at room temperature for 24±2 hrs	No mechanical damage. Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within -40 ~ 85°C.

SOLDERING CONDITION

Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 2,

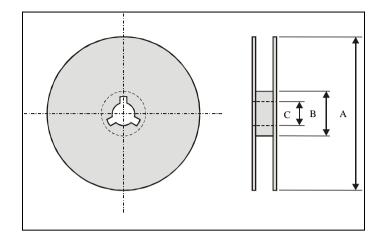



Fig 2. Infrared soldering profile

ORDERING CODE

RB	BPF	2010	Α	108Q1C
Walsin	Product Code	Dimension code	Application	Specification
RF device	BPF : Band Pass Filter	Per 2 digits of Length, Width, Thickness:	A : 2.4GHz ISM Band	Design code
		e.g. :		
		20 =		
		Length 20,		
		Width 12,		
		10=		
		Thickness 10		

Minimum Ordering Quantity: 2000 pcs per reel.


PACKAGING

Plastic Tape specifications (unit :mm)

Index	Ao	Во	ΦD	Т	W
Dimension (mm)	1.42 ± 0.10	2.25 ± 0.10	1.55 + 0.10	0.95 ± 0.10	8.0 ± 0.10
Index	Е	F	Po	P1	P2
Dimension (mm)	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.10	4.00 ± 0.10	2.00 ± 0.10

Reel dimensions

Index	Α	В	С
Dimension (mm)	Ф178.0	Ф60.0	Ф13.0

Taping Quantity: 2000 pieces per 7" reel

CAUTION OF HANDLING

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects, which might directly cause damage to the third party's life, body or property.

- (1) Aircraft equipment
- (2) Aerospace equipment
- (3) Undersea equipment
- (4) Medical equipment
- (5) Disaster prevention / crime prevention equipment
- (6) Traffic signal equipment
- (7) Transportation equipment (vehicles, trains, ships, etc.)
- (8) Applications of similar complexity and /or reliability requirements to the applications listed in the above.

Storage condition

- (1) Products should be used in 6 months from the day of WALSIN outgoing inspection.
- (2) Storage environment condition.
 - Products should be storage in the warehouse on the following conditions.

■ Temperature : +5 to +40°C

Humidity : 30 to 70% relative humidity

- Don't keep products in corrosive gases such as sulfur. Chlorine gas or acid or it may cause oxidization of electrode, resulting in poor solderability.
- Products should be storage on the palette for the prevention of the influence from humidity, dust and son on.
- Products should be storage in the warehouse without heat shock, vibration, direct sunlight and so on.
- Products should be storage under the airtight packaged condition.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Signal Conditioning category:

Click to view products by Walsin manufacturer:

Other Similar products are found below:

PD0409J5050S2HF HHS-109-PIN AFS14A35-1591.50-T3 JP510S LFB322G45SN1A504 SF2159E FM-104-PIN CER0813B

MAPDCC0005 3A325 BD0810N50100AHF DC0710J5005AHF DC2327J5005AHF LFL15869MTC1B787 X3C19F1-20S

CDBLB455KCAX39-B0 RF1353C 051157-0000 PD0922J5050D2HF 600S150FTRB 1E1305-3 1F1304-3S TP-103-PIN

BD1222J50200AHF BD1722J50100AHF 2450DP39K5400E BD0810J50150AHF BD1722J50200AHF DS-327-PIN MACP-008125
CK07F0 DS-329-PIN DS-313-PIN TP-104-PIN TP-101-PIN HH-128-PIN 8594810000 T-1000-N JP506S XC0900P-10S XC0900B-30S

CHE1260-QAG 11305-10 5962-9091202MXA 3A412S X3C06A4-03S B39000Z3410A4 DSS-333-PIN PD2425J5050S2HF

B39242B4360P810 B39781B8005P810