

RF Switch Series－RoHS Compliance

SP3T GPIO Switch

Halogens Free Product

Any 2G／3G／4G Band for TRx system

P／N：RFASWMT2628ATF09

Approval Sheet

FEATURES

■ Low Insertion Loss：0．5dB typ．＠ 2.7 GHz
■ High Isolation ：24dB typ．＠ 2.7 GHz
■ $\quad P_{1 d B}$ compression point ：35dBm typ．＠ 2.7 GHz
■ Low control voltage ： 1.3 to 2.8 V
■ Miniature footprint ： $1.1 \times 1.1 \times 0.55 \mathrm{~mm}^{3}$
－Moisture $\underline{\text { Sensitive Level }} 3$（MSL3）

Description

－The RFASWMT2628ATF09 is a CMOS SOI（Silicon On Insulator）Single Pole，Triple Throw（SP3T）switch that operating at $0.5-2.7 \mathrm{GHz}$ ．The RFASWMT2628ATF09 is manufactured in a LGA（ $1.1 \times 1.1 \times 0.55 \mathrm{~mm}^{3}$ ）package．
－The RFASWMT2628ATF09 features very high isolation with very low DC power consumption．
－The RFASWMT2628ATF09 has ESD protection devices to achieve excellent ESD performances．No DC Blocking capacitors are required for all RF ports unless DC is biased externally

Application

－Multi－mode 2G／3G，LTE application receive system．

Block Diagram and Pin Out（Top View）

Pin Names and Descriptions

Pin	Name	Description	Pin	Name	Description	
1	V $_{C 1}$	DC control voltage 1	6	GND	Ground	
2	RF3	RF path 3	7	VDD	DC power supply	
3	RF1	RF path 1	8	VC2	DC control voltage 2	
4	ANT	Antenna port	9	GND	Ground	
5	RF2	RF path 2				

Approval Sheet

Application Circuit

Parts List

Parts No．	Value
C1－C3	100 pF

Absolute Maximum Ratings

Parameter	Symbol	Minimum	Maximum	Units
RFx Input Power	Pin		+36	dBm
DC Supply Voltage	VDD		+5.0	V
DC Control Voltage	VCTL		+3.5	V
Storage temperature	TSTG	-40	+150	${ }^{\circ} \mathrm{C}$
Operating temperature	ToP	-40	+90	${ }^{\circ} \mathrm{C}$

Exceeding absolute maximum ratings may cause permanent damage．Operation between operating range maximum and absolute maximum for extended periods may reduce reliability．

Approval Sheet
Walsin Technology Corporation

Electrical Specifications

（Top $=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{ctL}}=0 / 1.8 \mathrm{~V}$ ，Characteristic Impedance $\mathrm{Z}_{\mathrm{o}}=50 \Omega$ ，Unless Otherwise Noted）

Parameter	Symbol	Test Condition	Min．	Typ．	Max．	Units
RF Specifications						
Operating frequency	f		0.5		2.7	GHz
Insertion loss （ANT to RF1／2／3 port）	IL	$\begin{aligned} & 0.5 \sim 1.0 \mathrm{GHz} \\ & 1.0 \sim 2.2 \mathrm{GHz} \\ & 2.2 \sim 2.7 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.30 \\ & 0.40 \\ & 0.50 \end{aligned}$	$\begin{aligned} & \hline 0.40 \\ & 0.50 \\ & 0.65 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation （ANT to RF1／2／3 port）	Iso	$\begin{aligned} & 0.5 \sim 1.0 \mathrm{GHz} \\ & 1.0 \sim 2.2 \mathrm{GHz} \\ & 2.2 \sim 2.7 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 30 \\ & 24 \\ & 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 35 \\ & 28 \\ & 24 \\ & \hline \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
On state match	VSWR	2．0 GHz		1.43	2.0	－
Input Power 1dB Compression Point	P1dB	$0.1 \sim 2.7 \mathrm{GHz}$		＋36		dBm
RFx Harmonics	$2 f_{0}$	$\mathrm{PIN}=+26 \mathrm{dBm}, \mathrm{f}=0.8 \sim 2.7 \mathrm{GHz}$		－78	－64	dBm
	$3 f_{0}$	$\mathrm{PIN}=+26 \mathrm{dBm}, \mathrm{f}=0.8 \sim 2.7 \mathrm{GHz}$		－67	－54	dBm
$3^{\text {rd }}$ Order Intermodulation Distortion	IMD3	$\begin{aligned} & \mathrm{f} 1=897.5 \mathrm{MHz} \text { at }+21 \mathrm{dBm} \\ & \mathrm{f} 2=852.5 \mathrm{MHz} \text { at }-15 \mathrm{dBm}, \\ & \mathrm{RX}=942.5 \mathrm{MHz} \end{aligned}$		－120	－115	dBm
		$\begin{aligned} & \mathrm{f} 1=1880 \mathrm{MHz} \text { at }+21 \mathrm{dBm} \\ & \mathrm{f} 2=1800 \mathrm{MHz} \text { at }-15 \mathrm{dBm}, \\ & R X=1960 \mathrm{MHz} \end{aligned}$		－118	－113	dBm
DC Specification（Decoder）						
Supply Voltage	VDD		2.5	2.8	5.0	V
Supply Current	IDD	$\mathrm{VDD}=2.8 \mathrm{~V}$		71	80	$\mu \mathrm{A}$
Control Voltage（High）	$V_{\text {cti }}$		1.3	1.8	2.8	V
Control Voltage（Low）	$V_{\text {cti }}$		0		0.45	V
Control Current	Ictl	$\mathrm{V}_{\text {CTL }}=1.8 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
Switching Specification						
Switching speed	Tsw	50\％V ${ }_{\text {ctL }}$ to 90／10\％RF		4	8	$\mu \mathrm{s}$

Note ：All measurements made in a 50Ω system with $0 /+1.8 \mathrm{~V}$ control voltages，unless otherwise specified．

Logic Table for Switch On－Path（High＝1．8V ，Low＝OV）

$\mathbf{V}_{\mathbf{c} 1}$	$\mathbf{V}_{\mathbf{c} 2}$	RF1	RF2	RF3
1	0	on	off	off
0	1	off	on	off
1	1	off	off	on

Typical Performance Characteristics
Isolation Matrix ：ANT to Off Path
（Top $=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {cтL }}=0 / 1.8 \mathrm{~V}$ ，Characteristic Impedance $\mathrm{Z}_{\mathrm{o}}=50 \Omega$ ，Unless Otherwise Noted）

On Path	Freq (GHz)	Isolation（dB）		
		RF1	RF2	RF3
			-37.3	-42.6
	2.2		-28.4	-32.3
	2.7		-25.9	-28.3
RF2	1.0	-35.1		-35.8
	2.2	-27.1		-28.9
	2.7	-23.6		-26.3
	1.0	-38.7	-35.3	
	2.2	-26.1	-27.1	
	2.7	-22.6	-25.0	

Insertion Loss and Return Loss Matrix
（Top $=25^{\circ} \mathrm{C}, \mathrm{VDD}=2.8 \mathrm{~V}, \mathrm{~V}_{\text {ctL }}=0 / 1.8 \mathrm{~V}$ ，Characteristic Impedance $\mathrm{Z}_{\mathrm{o}}=50 \Omega$ ，Unless Otherwise Noted）

On＿Path	Freq (GHz)	IL（dB）	RL＿Pole（dB）	RL＿Throw（dB）
	1.0	-0.29	-25.1	-29.3
	2.2	-0.39	-20.1	-20.2
	2.7	-0.48	-16.1	-16.4
RF2	1.0	-0.29	-29.9	-31.1
	2.2	-0.41	-22.6	-22.0
	2.7	-0.50	-17.7	-17.8
RF3	1.0	-0.30	-24.7	-27.5
	2.2	-0.41	-22.6	-22.7
	2.7	-0.50	-17.8	-18.2

Top View

Side View

Bottom View

Unit：mm

Solder Land Pattern

Land Pattern（Yellow Color）
Solder Resist（Green Color）
Package Outline（Red Line）

Reliability test

TEST	PROCEDURE／TEST METHOD	REQUIREMENT
Solderability JIS C 0050－4．6 JESD22－B102D	＊Solder bath temperature ： $255 \pm 5^{\circ} \mathrm{C}$ ＊Immersion time ： $5 \pm 0.5 \mathrm{sec}$ Solder：Sn3Ag0．5Cu for lead－free	At least 95% of a surface of each terminal electrode must be covered by fresh solder．
High temperature JIS C 0021	＊Temperature ： $90^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ＊Test duration ：1000＋24／－0 hours Measurement to be made after keeping at room temperature for $24 \pm 2 \mathrm{hrs}$	No mechanical damage． Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within－30～ $90^{\circ} \mathrm{C}$ ．
Low temperature JIS C 0020	＊Temperature ：$-30^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ ＊Test duration ：1000＋24／－0 hours Measurement to be made after keeping at room temperature for $24 \pm 2 \mathrm{hrs}$	No mechanical damage． Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within－30～ $90^{\circ} \mathrm{C}$ ．
Temperature cycle JIS C 0025	1． 30 ± 3 minutes at $-30 \pm 3^{\circ} \mathrm{C}$ ， 2． $10 \sim 15$ minutes at room temperature， 3． 30 ± 3 minutes at $+90 \pm 3^{\circ} \mathrm{C}$ ， 4． $10 \sim 15$ minutes at room temperature， Total 100 continuous cycles Measurement to be made after keeping at room temperature for 24 ± 2 hrs	No mechanical damage． Electrical specification shall satisfy the descriptions in electrical characteristics under the operational temperature range within $-30 \sim$ $90^{\circ} \mathrm{C}$.
High temperature operation life（HTOL）	```＊Temperature ： \(90^{\circ} \mathrm{C}\) \[\text { *VDD }=4.8 \mathrm{~V} \] \\ ＊Time ：1000＋24／－0 hrs． \\ Measurement to be made after keeping at room temperature for \(24 \pm 2 \mathrm{hrs}\)```	

Soldering condition

Typical examples of soldering processes that provide reliable joints without any damage are given in Figure 11.

Figure 11．Infrared soldering profile

Ordering code

RF	ASW	M
RF module	Module type	Application
RF：	ASW：Antenna Switch	M：SP3T
Walsin RF Switch		
Device		

T
Packing
T：Taping

Minimum Ordering Quantity： 3000 pcs per reel．

Packaging

Plastic Tape specifications（unit ：mm）

Index	Ao	Bo	ФD	T	W
Dimension（mm）	1.32 ± 0.10	1.32 ± 0.10	1.50 ± 0.05	0.72 ± 0.10	8.0 ± 0.10
Index	E	F	Po	P1	P2
Dimension（mm）	1.75 ± 0.10	3.50 ± 0.05	4.00 ± 0.20	4.00 ± 0.10	2.00 ± 0.05

Reel dimensions

Index	A	B	C
Dimension (mm)	$\Phi 178.0$	$\Phi 54.0$	$\Phi 13.2$

Taping Quantity ： 3000 pieces per 7＂reel

Caution of handling

Limitation of Applications

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects，which might directly cause damage to the third party＇s life，body or property．
（1）Aircraft equipment
（2）Aerospace equipment
（3）Undersea equipment
（4）Medical equipment
（5）Disaster prevention／crime prevention equipment
（6）Traffic signal equipment
（7）Transportation equipment（vehicles，trains，ships，etc．）
（8）Applications of similar complexity and／or reliability requirements to the applications listed in the above．

Storage condition

（1）Products should be used in 6 months from the day of WALSIN outgoing inspection，which can be confirmed．
（2）Storage environment condition．
－Products should be storage in the warehouse on the following conditions．
－Temperature
$:-10$ to $+40^{\circ} \mathrm{C}$
－Humidity
： 30 to 70% relative humidity
－Don＇t keep products in corrosive gases such as sulfur．Chlorine gas or acid or it may cause oxidization of electrode， resulting in poor solderability．
－Products should be storage on the palette for the prevention of the influence from humidity，dust and son on．
－Products should be storage in the warehouse without heat shock，vibration，direct sunlight and so on．
－Products should be storage under the airtight packaged condition．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Switch ICs category:
Click to view products by Walsin manufacturer:
Other Similar products are found below :
MASW-007921-002SMB BGSA142GN12E6327XTSA1 BGSA142MN12E6327XTSA1 BGSA142M2N12E6327XTSA1 MASW-00410011930W MASW-008853-TR3000 BGS13SN8E6327XTSA1 BGSF18DM20E6327XUMA1 BGSX210MA18E6327XTSA1 BGSX212MA18E6327XTSA1 SKY13446-374LF SW-227-PIN PE42524A-X CG2185X2 CG2415M6 MA4AGSW1A MA4AGSW2 MA4AGSW3 MA4AGSW5 MA4SW210B-1 MA4SW410 MASW-002102-13580G BGS 12PL6 E6327 BGS1414MN20E6327XTSA1 BGS1515MN20E6327XTSA1 BGSA11GN10E6327XTSA1 BGSX28MA18E6327XTSA1 HMC199AMS8 HMC595AETR HMC986A SKY13374-397LF SKY13453-385LF CG2430X1-C2 TGS4304 UPG2162T5N-A CG2415M6-C2 AS222-92LF SW-314-PIN UPG2162T5N-E2-A BGS18GA14E6327XTSA1 MASWSS0204TR-3000 MASWSS0201TR MASWSS0181TR-3000 MASW-007588TR3000 MASW-007075-000100 MASW-004103-13655P MASW-003102-13590G MASWSS0202TR-3000 MASW-008543-TR3000 MA4SW310B-1

