

WA04，WA06

$\pm 1 \%, \pm 5 \%$ ，Convex Type \＆Concave Type
General purpose chip resistors array

Size 0402x4，0603x4（8p4R）
Size 0602x8（16p8R）
＊Contents in this sheet are subject to change without prior notice．

FEATURE

1．Small size and light weight
2．Reduced size of final equipment
3．Lower surface mounted assembly costs
4．Higher component and equipment reliability
5．RoHS compliant and lead free products．

APPLICATION

－Consumer electrical equipment
－EDP，Computer application
－Telecom

DESCRIPTION

The resistors array is constructed in a high grade ceramic body（aluminum oxide）．Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate．The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to within tolerance by laser cutting of this resistive layer．

The resistive layer is covered with a protective coat．Finally，the two external end terminations are added．For ease of soldering the outer layer of these end terminations is Tin（lead free）alloy．

Fig 1．Construction of a Chip－R array（convex Type）

Fig 2．Construction of a Chip－R array（concave Type）

QUICK REFERENCE DATA

Note ：
1．Climatic category refer to IEC 60068
2．This is the maximum voltage that may be continuously supplied to the resistor element，see＂IEC publication 60115－8＂

3．Max．Operation Voltage ：So called RCWV（Rated Continuous Working Voltage）is determined by

$$
\text { RCWV }=\sqrt{\text { Rated Power } \times \text { Resistance Value }} \text { or Max. RCWV listed above, whichever is lower. }
$$

DIMENSIONS（unit ：mm）

	WA04X	WA06X
\mathbf{L}	2.00 ± 0.10	3.20 ± 0.10
\mathbf{W}	1.00 ± 0.10	1.60 ± 0.10
\mathbf{T}	0.45 ± 0.10	0.50 ± 0.10
\mathbf{P}	0.50 ± 0.05	0.80 ± 0.10
\mathbf{A}	0.40 ± 0.10	0.60 ± 0.10
\mathbf{B}	0.20 ± 0.10	0.30 ± 0.10
\mathbf{C}	0.30 ± 0.05	0.40 ± 0.10
\mathbf{G}	0.25 ± 0.10	0.30 ± 0.20

	WA06W
\mathbf{L}	4.00 ± 0.20
\mathbf{W}	1.60 ± 0.15
\mathbf{T}	0.45 ± 0.10
\mathbf{B}	0.30 ± 0.20
\mathbf{G}	0.30 ± 0.20
\mathbf{D}	0.20 ± 0.10
\mathbf{P}	0.50 ± 0.20
$\mathbf{H} 1$	0.40 ± 0.20
$\mathbf{H 2}$	0.30 ± 0.10

	WA06T
\mathbf{L}	$3.20+0.20 /-0.10$
\mathbf{W}	$1.60+0.20 /-0.10$
\mathbf{T}	0.60 ± 0.10
\mathbf{P}	0.80 ± 0.10
\mathbf{A}	0.60 ± 0.15
\mathbf{B}	0.35 ± 0.15
\mathbf{C}	0.50 ± 0.15
\mathbf{G}	0.50 ± 0.15

MARKING

3－digits marking for E24 series 1\％，5\％products

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value．For values up to 9.1 the R is used as a decimal point．For values of 10.0 or greater the first 2 digits apply to the resistance value and third indicate the number of zeros to follow．

Example

RESISTANCE	4.7Ω	10Ω	100Ω	6800Ω	47000Ω
3－digits marking	4 R 7	100	101	682	473

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E24 series for resistors with a tolerance of $\pm 5 \%$ ， The values of the E24 series are in accordance with＂IEC publication 60063＂

Standard values of nominal resistance are taken from the E24／E96 series for resistors with a tolerance of $\pm 1 \%$ ，The values of the E24／E96 series are in accordance with＂IEC publication 60063＂

Derating

The power that the resistor can dissipate depends on the operating temperature；see Fig．3．

Figure 3 Maximum dissipation in percentage of rated power as a function of the ambient temperature

CONSTRUCTION

$R 1=R 2=R 3=R 4$

MOUNTING

Due to their rectangular shapes and small tolerances，Surface Mountable Resistors are suitable for handling by automatic placement systems．
Chip placement can be on ceramic substrates and printed－circuit boards（PCBs）．
Electrical connection to the circuit is by individual soldering condition．
The end terminations guarantee a reliable contact．

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds．Therefore，it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse（mixed PCBs）．

Surface Mount Resistors are tested for solderability at $235^{\circ} \mathrm{C}$ during 2 seconds．The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds．Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 4.

Fig 4．Infrared soldering profile for Chip Resistors array

TEST AND REQUIREMENTS（JIS C 5201－1 ：1998）

Essentially all tests are carried out according to the schedule of IEC publication 115－8，category LCT／UCT／56（rated temperature range ：Lower Category Temperature，Upper Category Temperature；damp heat，long term， 56 days）．The testing also meets the requirements specified by EIA，EIAJ and JIS．

The tests are carried out in accordance with IEC publication 68，＂Recommended basic climatic and mechanical robustness testing procedure for electronic components＂and under standard atmospheric conditions according to IEC 60068－1，subclause 5．3．Unless otherwise specified，the following value supplied：

Temperature： $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ ．
Relative humidity：45\％to 75\％．
Air pressure： 86 kPa to 106 kPa （ 860 mbar to 1060 mbar ）．
All soldering tests are performed with midly activated flux．

TEST	PROCEDURE	REQUIREMENT	
		Resistor	Jumper
DC resistance Clause 4.5	DC resistance values measured at the test voltages specified below： $<10 \Omega @ 0.1 \mathrm{~V},<100 \Omega @ 0.3 \mathrm{~V},<1 \mathrm{~K} \Omega @ 1.0 \mathrm{~V},<10 \mathrm{~K} \Omega @ 3 \mathrm{~V}, \quad<100 \mathrm{~K} \Omega @ 10 \mathrm{~V}$, $<1 \mathrm{M} \Omega @ 25 \mathrm{~V},<10 \mathrm{M} \Omega @ 30 \mathrm{~V}$ $<1 \mathrm{M} \Omega @ 25 \mathrm{~V},<10 \mathrm{M} \Omega @ 30 \mathrm{~V}$	Within the specified tolerance	＜ $50 \mathrm{~m} \Omega$
Temperature Coefficient of Resistance（T．C．R） Clause 4.8	Natural resistance change per change in degree centigrade． $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \quad \mathrm{t}_{1}: 20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1 \mathrm{C}$ R_{1} ：Resistance at reference temperature R_{2} ：Resistance at test temperature	Refer to ＂QUICK REFERENCE DATA＂	N／a
Short time overload （S．T．O．L） Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list，whichever is less．	$\Delta \mathrm{R} / \mathrm{R}$ max．$\pm(2 \%+0.10 \Omega)$	$<50 \mathrm{~m} \Omega$
Resistance to soldering heat（R．S．H） Clause 4.18	Un－mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	$\Delta R / R \max . \pm(1 \%+0.05 \Omega)$ no visible damage	$<50 \mathrm{~m} \Omega$
Solderability Clause 4.17	Un－mounted chips completely immersed for 2 ± 0.5 second in a SAC solder bath at $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	good tinning（＞95\％covered） no visible damage	
Temperature cycling Clause 4.19	30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1{ }^{\circ} \mathrm{C}, 30$ minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$ ，total 5 continuous cycles	$\Delta R / R \max . \pm(1 \%+0.05 \Omega)$ no visible damage	＜ $50 \mathrm{~m} \Omega$
Load life（endurance） Clause 4.25	$1000+48 /-0$ hours，loaded with RCWV or Vmax in chamber controller $70 \pm 2^{\circ} \mathrm{C}, 1.5$ hours on and 0.5 hours off	$\begin{gathered} \Delta R / R \max . \pm(3 \%+0.10 \Omega) \\ \text { For } 10 \Omega \leq R<1 M \Omega ; \\ \Delta R / R \max . \pm(5 \%+0.10 \Omega) \\ \text { For } R<10 \Omega, R \geq 1 M \Omega \\ \hline \end{gathered}$	＜ $50 \mathrm{~m} \Omega$
Load life in Humidity Clause 4.24	$1000+48 /-0$ hours，loaded with RCWV or Vmax in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ relative humidity， 1.5 hours on and 0.5 hours off	$\begin{gathered} \Delta R / R \max . \pm(3 \%+0.10 \Omega) \\ \text { For } 10 \Omega \leq R<1 \mathrm{M} \Omega ; \\ \Delta R / R \max . \pm(5 \%+0.10 \Omega) \\ \text { For } R<10 \Omega, R \geq 1 \mathrm{M} \Omega \\ \hline \end{gathered}$	$<50 \mathrm{~m} \Omega$
Adhesion Clause 4.32	Pressurizing force： 5 N ，Test time： $10 \pm 1 \mathrm{sec}$ ．	No remarkable damage or removal of the terminations．	
Insulation Resistance Clause 4.6	Apply the maximum overload voltage（DC）for 1minute	$\mathrm{R} \geqq 10 \mathrm{G} \Omega$	
Dielectric Withstand Voltage Clause 4.7	Apply the maximum overload voltage（AC）for 1 minute	No breakdown or flashover	

TEST CONDITION FOR JUMPER（0 Ω ）

Item	WA04Y	WA04X	WA06X	WA06W	WA06T
Power Rating At $70^{\circ} \mathrm{C}$	$1 / 16 \mathrm{~W}$	$1 / 16 \mathrm{~W}$	$1 / 10 \mathrm{~W}$	$1 / 16 \mathrm{~W}$	$1 / 10 \mathrm{~W}$
Resistance	MAX． $50 \mathrm{~m} \Omega$				
Rated Current	1 A	1 A	1 A	2 A	1 A
Peak Current	1.5 A	1.5 A	3 A	3 A	3 A
Operating Temperature	$-55 \sim 155^{\circ} \mathrm{C}$				

CATALOGUE NUMBERS

The resistors have a catalogue number starting with ．

WA	X	XXXX	X	X	L
Size code 06： 0603 （1608） 04：0402（1005）	Type code X：x 4，Convex W：：8，Convex T：x 4，Concave	Resistance code 5\％E24 ： 2 significant digits followed by no．of zeros and a blank $\begin{array}{ll} 4.7 \Omega & =4 \mathrm{R} 7_{-} \\ 10 \Omega & =100_{-} \\ 220 \Omega & =221_{-} \\ \text {Jumper } & =000_{-} \end{array}$ ("_" means a blank) 1\％，E24＋E96： 3 significant digits followed by no．of zeros $\begin{array}{ll} 100 \Omega & =1000 \\ 37.4 \mathrm{~K} \Omega & =3742 \end{array}$	Tolerance $\begin{aligned} & \text { F: } \pm 1 \% \\ & \mathrm{~J}: \pm 5 \% \\ & \mathrm{P}: \text { Jumper } \end{aligned}$	Packaging code T ：7＂Reel taping B：Bulk G：13＂Reel taping	$\begin{aligned} & \text { Termination code } \\ & L \underset{\text { free) }}{=\text { Sn base (lead }} \end{aligned}$

WA06X，WA06T

1．Reeled tape packaging ： 8 mm width paper taping 5000 pcs per 7 ＂reel； 20,000 pcs per $13^{\prime \prime}$ reel．
2．Bulk packaging ：5000pcs per polybag

WA06W

1．Reeled tape packaging ： 12 mm width paper taping 5000 pcs per 7 ＂reel．
2．Bulk packaging ：5000pcs per polybag

WA04X，
Reeled tape packaging ：8mm width paper taping 10，000pcs per 7＂reel；40，000pcs per 13＂reel．

PACKAGING

Paper Tape specifications（unit ：mm）

Symbol	A	B	W	F	E
WA06X，WA06T	3.60 ± 0.20	2.00 ± 0.20		3.50 ± 0.20	1.75 ± 0.10
WA04X	2.20 ± 0.20	1.20 ± 0.20			
WA06W	$4.20_{-0.0}^{+0.2}$	$1.80_{-0.0}^{+0.12}$	12.00 ± 0.10	5.50 ± 0.05	1.75 ± 0.10

Symbol	P1	P0	ФD	T
WA06X，WA06T	4.00 ± 0.10	4.00 ± 0.10	$\Phi 1.50{ }_{-0.0}^{+0.1}$	Max． 1.0
WA04X	2.00 ± 0.05			Max． 0.6
WA06W	4.00 ± 0.10		\varnothing D1．55 ± 0.05	0.80 ± 0.05

Reel dimensions

Symbol	A	B	C	D
WA06X，WA04X，WA06T	$\Phi 178.0 \pm 2.0$	$\Phi 60.0 \pm 1.0$	13.0 ± 0.2	9.0 ± 0.5
WA06W	$\Phi 178.0 \pm 2.0$	$\Phi 60.0 \pm 1.0$	13.0 ± 0.2	12.4 ± 1.0

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Resistor Networks \& Arrays category:

Click to view products by Walsin manufacturer:

Other Similar products are found below :
CS6600552K000B8768 CSC08A01470KGEK M8340105K1002FGD03 M8340106MA010FHD03 M8340107K1471FGD03
M8340108K1001FCD03 M8340108K2402GGD03 M8340108K3242FGD03 M8340108K3322FCD03 M8340108K6192FGD03
M8340108K6202GGD03 M8340109K2002FCD03 M8340109M4701GCD03 EXB-24N121JX EXB-24N470JX EXB-A10E102J EXB-
A10E104J 744C083101JTR MDP1603100KGE04 PRA100I2-1KBWNW GUS-SS4-BLF-01-1002-G ACAS06S0830339P100
ACAS06S0830343P100 ACAS06S0830344P100 RM2012A-102/104-PBVW10 RM2012A-102503-PBVW10 RM2012A-502104-PBVW10
RM3216B-102302-PBVW10 L091S102LF ACAS06S0830341P100 ACAS06S0830342P100 ACAS06S0830345P100 EXB-14V300JX EXB-
U18330JX EXB-V8V220GV PRA100I2-10KBWN PRA100I4-10KBWN M8340102M4701JAD04 M8340105K1002GGD03
M8340105M1001JCD03 M8340107K3402FCD03 M8340108K1000FGD03 M8340108K1000GGD03 M8340108K1002GGD03
M8340108K2001FCD03 M8340108K2002FCD03 M8340108K3901GGD03 M8340108K4122FGD03 M8340108K4992FGD03
M8340109K2002GCD03

