

WF25F/W, WF20F/W, WF10F/W, WF12F/W, WF08F/W, WF06F/W, WF04F/W. $\pm 1 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%, \pm 0.05 \%, \pm 0.01 \%$ TC15 .TC10

High Precision Thin Film Chip Resistors Size 2512, 2010, 1210, 1206, 0805, 0603, 0402.
*Contents in this sheet are subject to change without prior notice.

## FEATURE

1. SMD metal film resistor
2. High reliability and stability of $0.25 \%$ and below per customer request
3. High performance of TCR: $15 \& 10 \mathrm{ppm} / \mathrm{K}$ and below per customer request
4. Low current noise
5. RoHS compliant and lead free

## APPLICATION

- Medical equipment
- Measuring instrument
- Communication device
- Computer
- Printer


## DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive layer that is applied to the top surface of the substrate. The composition of the resistive layer is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For environmental soldering issue, the outer layer of these end terminations is a Lead-free solder.


Fig 1. Construction of Chip-R WFxxF\&W

## QUICK REFERENCE DATA

| Item | General Specification |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Series No. | WF25F\&W | WF20F\&W | WF10F\&W | WF12F\&W | WF08F\&W | WF06F\&W | WF04F\&W |
| Size Code | $\begin{gathered} 2512 \\ (6432) \end{gathered}$ | $\begin{gathered} 2010 \\ (5025) \end{gathered}$ | $\begin{gathered} 1210 \\ (3225) \end{gathered}$ | $\begin{gathered} 1206 \\ (3216) \end{gathered}$ | $\begin{gathered} 0805 \\ (2012) \end{gathered}$ | $\begin{gathered} 0603 \\ (1608) \end{gathered}$ | $\begin{gathered} 0402 \\ (1005) \end{gathered}$ |
| Resistance Tolerance | $\pm 1.0 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%, \pm 0.05 \%, \pm 0.02 \%, \pm 0.01 \%$ |  |  |  |  |  |  |
| Resistance Range | $\begin{aligned} & 10 \Omega \sim \\ & 1.5 \mathrm{M} \Omega \end{aligned}$ | $\begin{gathered} 10 \Omega \sim \\ 1 \mathrm{M} \Omega \end{gathered}$ | $\begin{aligned} & 10 \Omega \sim \\ & 600 \mathrm{~K} \Omega \end{aligned}$ | $\begin{aligned} & 4.7 \Omega \sim \\ & 500 \mathrm{~K} \Omega \end{aligned}$ | $\begin{aligned} & 4.7 \Omega \sim \\ & 400 \mathrm{~K} \Omega \end{aligned}$ | $\begin{aligned} & 4.7 \Omega \sim \\ & 200 \mathrm{~K} \Omega \end{aligned}$ | $\begin{aligned} & 10 \Omega \sim \\ & 100 \mathrm{~K} \Omega \end{aligned}$ |
| TCR | $\pm 15$ \& $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| Max. Dissipation at $\mathrm{T}_{\mathrm{amb}}=70^{\circ} \mathrm{C}$ | 1W | 3/4W | 2/5W | 1/4W | 1/8W | 1/10W | 1/10W |
| Max. Operation Voltage | 200 V | 200V | 200 V | 200 V | 150V | 75V | 50V |
| Max. Overload Voltage | 400 V | 400 V | 400 V | 400 V | 300 V | 150V | 100V |
| Operating Temperature | $-55 \sim+155^{\prime} c$ |  |  |  |  |  |  |

Note :

1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

$$
R C W V=\sqrt{\text { Rated Power } \times \text { Resistance Value }} \text { or Max. RCWV listed above, whichever is lower. }
$$

## DIMENSIONS:(unit:mm)

| Type | WF25 | WF20 | WF10 | WF12 | WF08 | WF06 | WF04 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| L | $6.35 \pm 0.10$ | $5.00 \pm 0.10$ | $3.10 \pm 0.10$ | $3.05 \pm 0.15$ | $2.00 \pm 0.10$ | $1.55 \pm 0.10$ | $1.00 \pm 0.10$ |
| W | $3.20 \pm 0.15$ | $2.50 \pm 0.15$ | $2.60 \pm 0.15$ | $1.55 \pm 0.15$ | $1.25 \pm 0.10$ | $0.80 \pm 0.10$ | $0.50 \pm 0.05$ |
| A | $0.60 \pm 0.20$ | $0.60 \pm 0.20$ | $0.50 \pm 0.20$ | $0.40 \pm 0.20$ | $0.25 \pm 0.20$ | $0.25 \pm 0.15$ | $0.30 \pm 0.15$ |
| B | $0.90 \pm 0.25$ | $0.60 \pm 0.25$ | $0.50 \pm 0.20$ | $0.40 \pm 0.20$ | $0.40 \pm 0.20$ | $0.30 \pm 0.15$ | $0.30 \pm 0.15$ |
| t | $0.55 \pm 0.10$ | $0.55 \pm 0.10$ | $0.55 \pm 0.10$ | $0.55 \pm 0.15$ | $0.50 \pm 0.15$ | $0.45 \pm 0.15$ | $0.35 \pm 0.05$ |
|  |  |  | ate |  |  |  |  |

## MARKING

- 3-digits marking for 0603 size

WFxxF / W has same marking rule as WRxx $\pm 1 \%$.

| Nominal resistance |  |  |  | Description |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.E-24 s | series |  |  | As 0603 WR06X $\pm 5 \%$. |  |  |  |  |  |  |  |  |  |  |  |
| 2.E-96 series |  |  |  | The 1st two digit codes are referring to the CODE on the table, the 3rd code is the index of resistanc value:$\begin{array}{r} Y=10^{-2}, X=10^{-1}, A=10^{0}, B=10^{1}, C=10^{2}, D=10^{3}, E=10^{4}, F=10^{5} \\ E X: \quad 17.8 \Omega=25 X, 178 \Omega=25 A, 1 K 78=25 B \\ 17 K 8=25 C, 178 K=25 D, 1 M 78=25 E \end{array}$ |  |  |  |  |  |  |  |  |  |  |  |
| 3. Remark |  |  |  | There is no marking for the items are not under E-24 and E-96 series |  |  |  |  |  |  |  |  |  |  |  |
| CODE | R_value |
| 01 | 100 | 13 | 133 | 25 | 178 | 37 | 237 | 49 | 316 | 61 | 422 | 73 | 562 | 85 | 750 |
| 02 | 102 | 14 | 137 | 26 | 182 | 38 | 243 | 50 | 324 | 62 | 432 | 74 | 576 | 86 | 768 |
| 03 | 105 | 15 | 140 | 27 | 187 | 39 | 249 | 51 | 332 | 63 | 442 | 75 | 590 | 87 | 787 |
| 04 | 107 | 16 | 143 | 28 | 191 | 40 | 255 | 52 | 340 | 64 | 453 | 76 | 604 | 88 | 806 |
| 05 | 110 | 17 | 147 | 29 | 196 | 41 | 261 | 53 | 348 | 65 | 464 | 77 | 619 | 89 | 825 |
| 06 | 113 | 18 | 150 | 30 | 200 | -42 | 267 | 54 | 357 | 66 | 475 | 78 | 634 | 90 | 845 |
| 07 | 115 | 19 | 154 | 31 | 205 | 43 | 274 | 55 | 365 | -67 | 487 | 79 | 649 | 91 | 866 |
| 08 | 118 | 20 | 158 | 32 | 210 | 44 | 280 | 56 | 374 | 68 | 499 | 80 | 665 | 92 | 887 |
| 09 | 121 | 21 | 162 | 33 | 215 | 45 | 287 | 57 | 383 | 69 | 511 | 81 | 681 | 93 | 909 |
| 10 | 124 | 22 | 165 | 34 | 221 | 46 | 294 | 58 | 392 | 70 | 523 | 82 | 698 | 94 | 931 |
| 11 | 127 | 23 | 169 | 35 | 226 | 47 | 301 | м 59 | 402 | 71 | 536 | 83 | 715 | 95 | 953 |
| 12 | 130 | 24 | 174 | 36 | 232 | 48 | 309 | 60 | 412 | 72 | 549 | 84 | 732 | 96 | 976 |

- 4-digits marking for 2512, 2010, 1210, 1206, 0805 size

For E24+E96, each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value. For values below $97 \Omega 6$ the $R$ is used as a digit. For values of $100 \Omega$ or greater, the first 3 digits are significant, the fourth digit indicates the number of multiple to follow.

## Example

| RESISTANCE | $100 \Omega$ | $6800 \Omega$ | $47000 \Omega$ |
| :---: | :---: | :---: | :---: |
| 4-digits marking | 1000 | 6801 | 4702 |

- No marking code for 0402 size


## FUNCTIONAL DESCRIPTION

## Product characterization

Standard values of nominal resistance are taken from the E192 \& E24 series for resistors with a tolerance of $\pm 1.0 \%, \pm 0.5 \%, \pm 0.25 \%, \pm 0.1 \%, \pm 0.05 \%, \pm 0.01 \%$. The values of the $\mathrm{E} 24 / \mathrm{E} 192$ series are in accordance with "IEC publication 60063".

## DERATING

The power that the resistor can dissipate depends on the operating temperature; see Fig. 2


Fig. 2 Maximum dissipation in percentage of rated power As a function of the ambient temperature

## MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).
Electrical connection to the circuit is by individual soldering condition.
The end terminations guarantee a reliable contact.


## SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at $235^{\circ} \mathrm{C}$ during 2 seconds within lead-free solder bath. The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds. Typical examples of soldering profile and condition that provide reliable joints without any damage are given in Fig 3. and Table 1.


Fig. 3 Infrared soldering profile for Chip Resistors

Table 1. Infrared soldering condition for Chip Resistors

| Temperature Condition | Exposure Time |
| :--- | :--- |
| Average ramp-up rate $\left(217^{\circ} \mathrm{C}\right.$ to $\left.260^{\circ} \mathrm{C}\right)$ | Less than $3^{\circ} \mathrm{C} /$ second |
| Between 150 and $200^{\circ} \mathrm{C}$ | Between $60-120$ seconds |
| $>217^{\circ} \mathrm{C}$ | Between $60-150$ seconds |
| Peak Temperature | $260^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$ |
| Time within $245^{\circ} \mathrm{C}$ | Min. 30 seconds |
| Ramp-down rate $\left(\right.$ Peak to $\left.217^{\circ} \mathrm{C}\right)$ | Less than $6^{\circ} \mathrm{C} /$ second |
| Time from $25^{\circ} \mathrm{C}$ to Peak | No greater than 480 seconds |

## CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

| WF06 | F | xxxx | B | T | L |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Size code <br> WF25: 2512 <br> WF20: 2010 <br> WF10: 1210 <br> WF12: 1206 <br> WF08: 0805 <br> WF06: 0603 <br> WF04: 0402 | Type code <br> $\mathrm{F}: \mathrm{TCR}=15 \mathrm{ppm}$ <br> $\mathrm{W}: \mathrm{TCR}=10 \mathrm{ppm}$ | Resistance code <br> E192+E24: <br> $R$ is first code followed by 3 significant digits. $\begin{array}{ll} 100 \Omega & =1000 \\ 37.4 \mathrm{~K} \Omega & =3742 \end{array}$ | Tolerance <br> T: $\pm 0.01 \%$ <br> U: $\pm 0.02 \%$ <br> A : $\pm 0.05 \%$ <br> B : $\pm 0.10 \%$ <br> C : $\pm 0.25 \%$ <br> D : $\pm 0.50 \%$ <br> F : $\pm 1.00 \%$ | Packaging code <br> T : "7" Taped \& Reel | Termination code <br> $L$ : lead free |

1. Reeled tape packaging: 8 mm width paper taping.

5,000pcs/reel for WF10, WF12, WF08, WF06;
10,000pcs/reel for WF04.
2. Reeled tape packaging: 12 mm width paper taping 4,000pcs/reel for WF25, WF20.


## TEST AND REQUIREMENTS(JIS C 5201-1 : 1998)

| TEST | PROCEDURE | REQUIREMENT |
| :---: | :---: | :---: |
|  |  | Resistor |
| DC resistance Clause 4.5 | DC resistance values measured | Within the specified tolerance |
| Temperature Coefficient of Resistance(T.C.R) Clause 4.8 | Natural resistance change per change in degree centigrade. $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right)$ <br> $R_{1}$ : Resistance at reference temperature <br> $\mathrm{R}_{2}$ : Resistance at test temperature $\begin{aligned} & t_{1}: 20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1 \mathrm{C} \\ & \mathrm{t} 2: 125^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1{ }^{\circ} \mathrm{C} \end{aligned}$ | Refer to <br> " QUICK REFERENCE DATA " |
| Short time overload (S.T.O.L) <br> Clause 4.13 | Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less. | $\Delta R / R$ max. $\pm$ (0.1\% $+0.05 \Omega$ ) |
| Resistance to soldering heat(R.S.H) IEC 60068-258:2004 | Un-mounted chips completely immersed for $10 \pm 1$ second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ | no visible damage $\Delta R / R \max . \pm(0.1 \%+0.05 \Omega)$ |
| Solderability <br> IEC 60068-258:2004 | Un-mounted chips completely immersed for $2 \pm 0.5$ second in a SAC solder bath at $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ | good tinning (>95\% covered) no visible damage |
| Temperature cycling Clause 4.19 | 30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}$ $1^{\circ} \mathrm{C}, 30$ minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, \quad 2 \sim 3$ minutes at $2^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$, total 5 continuous cycles | no visible damage <br> $\Delta \mathrm{R} / \mathrm{R} \max . \pm(0.25 \%+0.05 \Omega)$ |
| Load Life (Endurance) Clause 4.25 | $70 \pm 2^{\circ} \mathrm{C}, 1000$ hours, loaded with RCWV or Vmax, 1.5 hours on and 0.5 hours off | $\Delta R / R \max . \pm(0.25 \%+0.05 \Omega)$ |
| Humidity Clause 4.24 | 1000 hours, at rated continuous working voltage in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ relative humidity, 1.5 hours on and 0.5 hours off | $\Delta R / R \max . \pm(0.25 \%+0.05 \Omega)$ |
| Bending strength <br> Clause 4.33 | Resistors mounted on a 90 mm glass epoxy resin PCB(FR4); bending : 3 mm , once for 10 seconds. | $\Delta \mathrm{R} / \mathrm{R}$ max. $\pm$ (0.1\% $+0.05 \Omega$ ) |
| Adhesion Clause 4.32 | Pressurizing force: 5 N , Test time: $10 \pm 1 \mathrm{sec}$. | No remarkable damage or removal of the terminations. |

## PACKAGING

Paper Tape specifications (unit :mm)


| Series No. | A | B | W | F | E |
| :---: | :---: | :---: | :---: | :---: | :---: |
| WF25 | $6.90 \pm 0.20$ | $3.60 \pm 0.20$ | $12.00 \pm 0.30$ | $5.50 \pm 0.10$ | $1.75 \pm 0.10$ |
| WF20 | $5.50 \pm 0.20$ | $2.80 \pm 0.20$ | $12.00 \pm 0.30$ | $5.50 \pm 0.10$ | $1.75 \pm 0.10$ |
| WF10 | $3.60 \pm 0.20$ | $3.00 \pm 0.20$ | $8.00 \pm 0.30$ | $3.50 \pm 0.20$ | $1.75 \pm 0.10$ |
| WF12 | $3.60 \pm 0.20$ | $2.00 \pm 0.20$ | $8.00 \pm 0.30$ | $3.50 \pm 0.20$ | $1.75 \pm 0.10$ |
| WF08 | $2.40 \pm 0.20$ | $1.65 \pm 0.20$ | $8.00 \pm 0.30$ | $3.50 \pm 0.20$ | $1.75 \pm 0.10$ |
| WF06 | $1.90 \pm 0.20$ | $1.10 \pm 0.20$ | $8.00 \pm 0.30$ | $3.50 \pm 0.20$ | $1.75 \pm 0.10$ |
| WF04 | $1.20 \pm 0.10$ | $0.7 \pm 0.10$ | $8.00 \pm 0.30$ | $3.50 \pm 0.05$ | $1.75 \pm 0.10$ |


| Series No. | P1 | P0 | $\Phi \mathrm{D}$ | T |
| :---: | :---: | :---: | :---: | :---: |
| WF25 | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | Max 1.2 |
| WF20 | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | Max 1.2 |
| WF10 | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | Max. 1.0 |
| WF12 | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | Max. 1.0 |
| WF08 | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | Max. 1.0 |
| WF06 | $4.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | $0.65 \pm 0.05$ |
| WF04 | $2.00 \pm 0.10$ | $4.00 \pm 0.10$ | $\Phi 1.50_{-0.0}^{+0.1}$ | $0.40 \pm 0.05$ |

## Reel dimensions



| Symbol | A | B | C | D |
| :---: | :---: | :---: | :---: | :---: |
| (unit : mm) | $\Phi 178.0 \pm 2.0$ | $\Phi 60.0 \pm 1.0$ | $13.0 \pm 0.2$ | $9.0 \pm 0.5$ |

Taping quantity

- Chip resistors 4,000 pcs per reel (WF25, WF20)
- Chip resistors 5,000 pcs per reel (WF10, WF12, WF08, WF06)
- Chip resistors 10,000 pcs per reel (WF04)



## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MELF Resistors category:
Click to view products by Walsin manufacturer:
Other Similar products are found below :
MMA02040E4709BB100 1-21002-2 SMA0207JTEU8202 231219511009 CSRV0207FTDT0150 CSRV0207FTDT0220
CSRV0207FTDT0330 CSRV0207FTDT0470 CSRV0207FTDT0680 CSRV0207FTDT1001 CSRV0207FTDT1002 CSRV0207FTDT1003
CSRV0207FTDT1500 CSRV0207FTDT1501 CSRV0207FTDT1502 CSRV0207FTDT1503 CSRV0207FTDT1504 CSRV0207FTDT1960
CSRV0207FTDT2200 CSRV0207FTDT2201 CSRV0207FTDT2202 CSRV0207FTDT2203 CSRV0207FTDT2204 CSRV0207FTDT3300
CSRV0207FTDT3303 CSRV0207FTDT3304 CSRV0207FTDT3921 CSRV0207FTDT4700 CSRV0207FTDT4702 CSRV0207FTDT5603
CSRV0207FTDT6800 CSRV0207FTDT6801 CSRV0207FTDT6802 CSRV0207FTDT6803 CSRV0207FTDT8201 CSRV0207FTDU0100
CSRV0207FTDU0220 CSRV0207FTDU0470 CSRV0207FTDU1001 CSRV0207FTDU1002 CSRV0207FTDU1003 CSRV0207FTDU2201
CSRV0207FTDU2202 CSRV0207FTDU2203 CSRV0207FTDU2204 CSRV0207FTDU2210 CSRV0207FTDU4700 CSRV0207FTDU4701
CSRV0207FTDU4702 CSRV0207FTDU4703

