

APPROVAL SHEET

WR18X(W), WR20X(W), WR25X(W)

±1%, ±5%

Thick Film Power Chip Resistors

Size 1218,2010,2512

*Contents in this sheet are subject to change without prior notice.

FEATURE

- 1. High power rating and compact size
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. RoHS compliant and Lead free products

APPLICATION

- Power supply
- PDA
- Digital meter
- Computer
- Automotives
- Battery charger
- DC-DC power converter

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

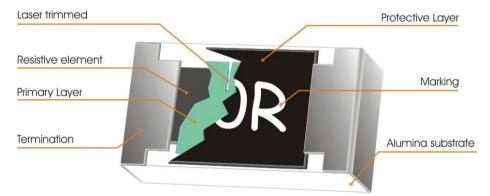


Fig 1. Construction of 2512, 2010 Chip-R

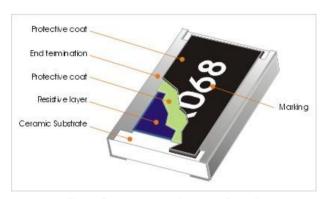


Fig 2. Construction of a 1218 Chip-R

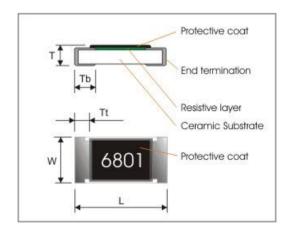
QUICK REFERENCE DATA

Item	General Specification				
Series No.	WR18X(W)	WR20X(W)	WR25X(W)		
Size code	1218(3248)	2010 (5025),	2512(6432)		
Resistance Tolerance	±	±5% (E24); ±1% (E24+E96)			
Resistance Range		1Ω ~ 10M Ω , Jumper (0 Ω)			
TCR (ppm/°C) : 10Ω < Rn $\leq 10M\Omega$	± 100 ppm/°C	± 100 ppm/°C	± 100 ppm/°C		
1Ω≤ Rn ≤ $10Ω$	± 200 ppm/°C	± 200 ppm/°C	± 200 ppm/°C		
Max. dissipation at T _{amb} =70°C	1W	0.75 W	1W		
Max. Operation Voltage (DC or RMS)	200V 200V 250V				
Max. Overload Voltage (DC or RMS)	400V	400V	500V		
Operation temperature	-55 ~ +155°C				
Storage temperature	5 ~ 40°C				

Test conditions for jumper (0 ohm)

Туре	WR18X(W)	WR20X(W)	WR25X(W)
Power Rating At 70C	1 W	3/4 W	1 W
Resistance	Max. 50mR	Max. 50mR	Max. 50mR
Rated Current	4.5 A	3.8 A	4.5 A
Peak Current	11 A	9 A	11 A
Operating Temperature	-55C ~ 155C	-55C ~ 155C	-55C ~ 155C

Note:


- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{RatedPower \times Resistance\ Value}\ \ or\ Max.\ RCWV\ listed\ above,\ whichever\ is\ lower.$

- 3. Max. Operation Current: So called RCWC (Rated Continuous Working Current) is determined by
- 4. $RCWC = \sqrt{Rated Power / Resistance Value}$

MECHANICAL DATA (unit: mm)

TYPE	WR18	WR20	WR25
L	3.05±0.15	5.00±0.20	6.40±0.20
W	4.60±0.20	2.50±0.20	3.20±0.20
Т	0.55±0.10	0.55±0.10	0.60±0.10
Tt	0.45±0.25	0.65±0.25	0.65±0.25
Tb	0.50±0.25	0.60±0.25	0.90±0.25

MARKING

Each resistor is marked with a four-digit code on the protective coating to designate the nominal resistance value.

Example:

 $1R00 = 1\Omega$ $1001 = 1000\Omega$ $0000 = 0\Omega$

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of \pm 5% & \pm 1%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating curve

The power that the resistor can dissipate depends on the operating temperature; see Fig.3

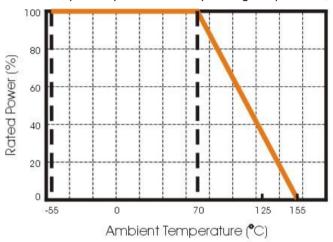


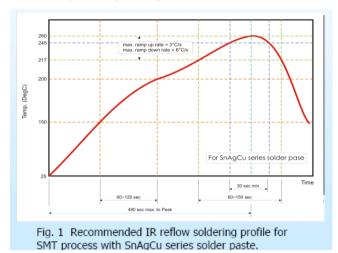
Figure 3. Maximum dissipation in percentage of rated power as a function of the ambient temperature.

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.


The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in below.

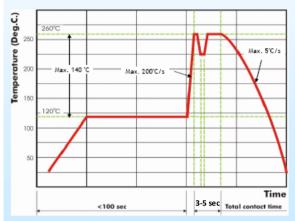


Fig. 2 Recommended wave soldering profile for SMT process with SnAgCu series solder.

The resistors have a catalogue number starting with .

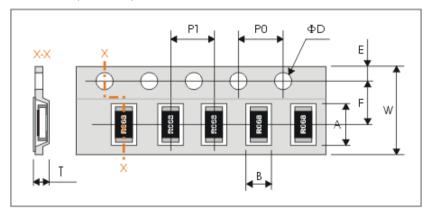
WR20	x	472_	J	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR25 : 2512	X :	5% E24 : 2 significant digits	J : ±5%	T:7" Reel taping	L = Sn base (lead
WR20 : 2010	±5%: 1Ω-10MΩ	followed by no. of zeros and a blank	F:±1%	(T:1218 10" Reel)	free)
WR18: 1218	±1%: 10Ω-1ΜΩ	4.7Ω =4R7_	P : Jumper	Q:10" Reel taping	
	W :	10Ω =100_		G: 13" Reel taping	
	1% : <10Ω or	1% E24+E96: 3 significant digits			
	>1MΩ	followed by no. of zeros			
		102Ω =1020			
		37.4KΩ =3742			

TEST AND REQUIREMENTS(JIS C 5201-1: 1998)

Essentially all tests are carried out according to the schedule of IEC publication 115-8, category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days). The testing also meets the requirements specified by EIA, EIAJ and JIS.

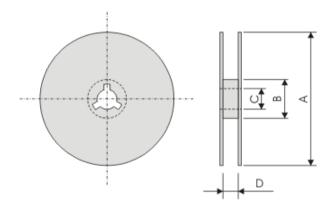
The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 60068-1, subclause 5.3. Unless otherwise specified, the following value supplied:

Temperature: 15 °C to 35 °C. Relative humidity: 45% to 75%.


Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar). All soldering tests are performed with midly activated flux.

TEST	PROCEDURE	REQUIREMENT
DC resistance Clause 4.5	DC resistance values measured at the test voltages specified below : $<10\Omega@0.1V,<100\Omega@0.3V,<1K\Omega@1.0V,<10K\Omega@3V,\\<100K\Omega@10V,<1M\Omega@25V,<10M\Omega@30V$	Within the specified tolerance
Temperature Coefficient of Resistance(T.C.R) Clause 4.8	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\times 10^6 \; \text{(ppm/°C)} \text{$t_1:20°C+5°C-1°C$}$ R ₁ : Resistance at reference temperature R ₂ : Resistance at test temperature	Refer to "QUICK REFERENCE DATA"
Short time overload (S.T.O.L) Clause Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. \pm (2%+0.1 Ω)
Resistance to soldering heat(R.S.H) Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260 $^{\circ}\!$	no visible damage Δ R/R max. \pm (1%+0.05 Ω)
Solderability Clause 4.17	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235 $^{\circ}\!$	good tinning (>95% covered) no visible damage
Temperature cycling Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at +155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	no visible damage $\Delta R/R$ max. $\pm (1\%+0.05\Omega)$
Load life (endurance) Clause 4.25	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber controller 70±2°C, 1.5 hours on and 0.5 hours off	Δ R/R max. \pm (3%+0.1 Ω)
Load life in Humidity Clause 4.24	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	Δ R/R max. \pm (3%+0.1 Ω)
Bending strength Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4); bending : 2 mm, once for 10 seconds	Δ R/R max. ±(1%+0.05 Ω)
Adhesion Clause 4.32	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or removal of the terminations
Insulation Resistance Clause 4.6	Apply the maximum overload voltage (DC) for 1minute	R≧10GΩ
Dielectric Withstand Voltage	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover
Clause 4.7		

PACKAGING


Plastic Tape specifications (unit :mm)

Туре	Α	В	W	F	E
WR18	4.90±0.20	3.55±0.30			
WR20	5.50±0.20	2.80±0.20	12.00±0.30	5.50±0.10	1.75±0.10
WR25	6.90±0.20	3.60±0.20			

Туре	P1	P0	ΦD	Т
WR18	8.00±0.10		Ф1.50 ^{+0.1}	1.30±0.20
WR20	4.00±0.10	4.00±0.10		MAX1.2
WR25	4.00±0.10			IVIAA 1.2

Reel dimensions

(unit: mm)

Symbol	Α	В	С	D
7" Reel	Ф178.0±2.0	Φ60.0±1.0	13.0±0.2	12.4.0±1.00
10" Reel	Ф254.0±2.0	Φ100.0±1.0	13.0±0.2	14.0±0.20
13" Reel	Ф330.0±2.0	Φ100.0±1.0	13.0±0.2	14.0±0.20

Taping quantity

WR20, WR25 by plastic tape taping 4,000 pcs per 7" reel; 8,000pcs per 10" reel; 16,000pcs per 13" reel! WR18 by plastic tape taping 3,000 pcs per 10" reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Thick Film Resistors category:

Click to view products by Walsin manufacturer:

Other Similar products are found below:

MCR03EZPFX3162 MCR004YZPJ332 201007J022KT4E 201007F1653T4E 201007F6652T4E 0603WAF137KT5E RTT204702FTE RTT203000FTE RTT2056R0FTE CR2010F470KE04Z RTT018451FTH RTT021802DTH 0402WGF510LTCE 0201WMJ0200TEE TR0603B26K7P0550Z 0201WMF5102TEE 1210W2J047KT5E YLR12-2-4F-W HOT(0.25x1.3)-3.2-0R-I HOT(0.4x1.5)-5.2-0R-I HoT(0.45x1.5)-8.2-0R-I 0201WMF1103TEE 0201WMF7152TEE 1210W2J0124T5E 201007J010LT4E 201007J0360T4E 201007J0430T4E 0805W8F931KT5E 1206W4F5231T5E 1210W2J0620T5E 201007J0822T4E 0201WMF1005TCE 0201WMF1212TCE 0201WMF1373TCE 0201WMF1400TCE 0201WMF2000TEE 0201WMF2001TCE 0201WMF205TCE 0201WMF2672TCE 0201WMF2803TCE 0201WMF357JTCE 0201WMF3743TCE 0201WMF430JTCE 0201WMF4990TCE 0201WMF5104TCE 0201WMF510JTEE 0201WMF5110TCE 0201WMF6652TEE 0201WMF6812TCE 0201WMF8200TCE