

WW25X，WW20X，WW18X

$\pm 5 \%, \pm 1 \%$

Thick Film Low Ohm Power Chip Resistors

 Size 2512，2010， 1218 RoHS Compliant and Halogen free
FEATURE

1．High power rating and compact size
2．High reliability and stability
3．Reduced size of final equipment
4．RoHS compliant and Lead free products

APPLICATION

－Power supply
－PDA
－Digital meter
－Computer
－Automotives
－Battery charger
－DC－DC power converter

DESCRIPTION

The resistors are constructed in a high grade ceramic body（aluminum oxide）．Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate．The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer．
The resistive layer is covered with a protective coat．Finally，the two external end terminations are added．For ease of soldering the outer layer of these end terminations is a Lead－tin alloy．

Fig 1．Construction of 2512， 2010 Chip－R

Fig 2．Construction of a 1218 Chip－R

QUICK REFERENCE DATA

Item	General Specification					
Series No．	WW25X		WW20X		WW18X	
Size code	2512 （ 6432 ）		2010（5025）		1218（3248）	
Resistance Tolerance	$\pm 5 \%$（E24）	$\pm 1 \%$	$\pm 5 \%$（E24）	$\pm 1 \%$	$\pm 5 \%$（E24）	$\pm 1 \%$
Resistance Range	$0.01 \Omega \sim 0.91 \Omega$	$0.01 \Omega \sim 0.976 \Omega$	$0.01 \Omega \sim 0.91 \Omega$	$0.01 \Omega \sim 0.976 \Omega$	$0.02 \Omega \sim 0.91 \Omega$	$0.02 \Omega \sim 0.976 \Omega$
$\begin{gathered} \hline \text { TCR }\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \\ 0.01 \Omega \leq \mathrm{Rn}<0.05 \Omega \\ 0.05 \Omega \leq \mathrm{Rn}<0.10 \Omega \\ 0.10 \Omega \leq \mathrm{Rn}<0.50 \Omega \\ 0.50 \Omega \leq \mathrm{Rn}<1 \Omega \end{gathered}$		$\begin{aligned} & \leq 2100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 400 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \leq 1500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 1000 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \leq 300 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$	
Max．dissipation at $\mathrm{T}_{\text {amb }}=70^{\circ} \mathrm{C}$	1 W		0.5 W		1 W	
Climatic category （IEC 60068）	55／155／56		55／155／56		55／155／56	

Note ：
1．This is the maximum voltage that may be continuously supplied to the resistor element，see＂IEC publication 60115－8＂

2．Max．Operation Voltage ：So called RCWV（Rated Continuous Working Voltage）is determined by
RCWV $=\sqrt{\text { Rated Power } \times \text { Resistance Value }}$ or Max．RCWV listed above，whichever is lower．
3．Runner items are included in product range defined as $0.025,0.04,0.05,0.06,0.07,0.08,0.09$ ohm
MECHANICAL DATA（unit ：mm）

Symbol \backslash size	2512	2010	1218
L	6.40 ± 0.20	5.00 ± 0.20	3.05 ± 0.15
W	3.20 ± 0.20	2.50 ± 0.20	4.60 ± 0.20
T	0.60 ± 0.10	0.55 ± 0.10	0.55 ± 0.10
Tt	0.65 ± 0.25	0.65 ± 0.25	0.45 ± 0.25
Tb	0.90 ± 0.25	0.60 ± 0.25	0.50 ± 0.25

MARKING

Each resistor is marked with a four－digit code on the protective coating to designate the nominal resistance value．

Example：

$$
\begin{aligned}
& \mathrm{R} 010=0.01 \Omega \\
& \mathrm{R} 510=0.51 \Omega
\end{aligned}
$$

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 \＆E24 series for resistors with a tolerance of $\pm 5 \%$ \＆$\pm 1 \%$ ．The values of the E24／E96 series are in accordance with＂IEC publication 60063＂．

Derating curve

The power that the resistor can dissipate depends on the operating temperature；see Fig． 3

Fig 3．Max．dissipation in percentage of rated power as a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances，Surface Mountable Resistors are suitable for handling by automatic placement systems．
Chip placement can be on ceramic substrates and printed－circuit boards（PCBs）．
Electrical connection to the circuit is by individual soldering condition．
The end terminations guarantee a reliable contact．

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of $260^{\circ} \mathrm{C}$ for 10 seconds．Therefore，it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse（mixed PCBs）．

Surface Mount Resistors are tested for solderability at $235^{\circ} \mathrm{C}$ during 2 seconds．The test condition for no leaching is $260^{\circ} \mathrm{C}$ for 30 seconds．Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 4.

Fig 4．Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with

WW25	X	R020	J	T	L
Size code WW25 ： 2512 WW20 ： 2010 WW18 ： 1218	Type code X ：Normal	Resistance code E96 +E24: R is first digit followed by 3 significant digits． $\begin{aligned} & 0.020 \Omega=\mathrm{R} 020 \\ & 0.510 \Omega=\mathrm{R} 510 \\ & 0.025 \Omega=\mathrm{R} 025 \end{aligned}$	Tolerance J ：$\pm 5 \%$ F：$\pm 1 \%$ D ：$\pm 0.5 \%$	Packaging code T：7＂Reeled Q：10＂Reeled	Termination code L＝Sn base（lead free）

TEST AND REQUIREMENTS（JIS C 5201－1 ：1998）

Essentially all tests are carried out according to the schedule of IEC publication 115－8，category LCT／UCT／56（rated temperature range ：Lower Category Temperature，Upper Category Temperature；damp heat，long term， 56 days）．The testing also meets the requirements specified by EIA，EIAJ and JIS．
The tests are carried out in accordance with IEC publication 68，＂Recommended basic climatic and mechanical robustness testing procedure for electronic components＂and under standard atmospheric conditions according to IEC 60068－1，subclause 5．3．Unless otherwise specified，the following value supplied：
Temperature： $15^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ ．
Relative humidity： 45% to 75% ．
Air pressure：86kPa to 106 kPa （ 860 mbar to 1060 mbar ）．
All soldering tests are performed with midly activated flux．

TEST	PROCEDURE	REQUIREMENT
Temperature Coefficient of Resistance（T．C．R） Clause 4.8	Natural resistance change per change in degree centigrade． $\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)} \times 10^{6}\left(\mathrm{ppm} /{ }^{\circ} \mathrm{C}\right) \quad \mathrm{t}_{1}: 20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$ R_{1} ：Resistance at reference temperature R_{2} ：Resistance at test temperature	Refer to ＂QUICK REFERENCE DATA＂
Short time overload （S．T．O．L） Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list，whichever is less．	$\Delta R / R \max . \pm(2 \%+0.005 \Omega)$
Resistance to soldering heat（R．S．H） Clause 4.18	Un－mounted chips completely immersed for 10 ± 1 second in a SAC solder bath at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	no visible damage $\Delta R / R \max . \pm(1 \%+0.005 \Omega)$
Solderability Clause 4.17	Un－mounted chips completely immersed for 2 ± 0.5 second in a SAC solder bath at $235^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$	good tinning（＞95\％covered） no visible damage
Temperature cycling Clause 4.19	30 minutes at $-55^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}, 30$ minutes at $+155^{\circ} \mathrm{C} \pm 3^{\circ} \mathrm{C}, 2 \sim 3$ minutes at $20^{\circ} \mathrm{C}+5^{\circ} \mathrm{C}-1^{\circ} \mathrm{C}$ ，total 5 continuous cycles	no visible damage $\Delta R / R \max . \pm(1 \%+0.005 \Omega)$
Load life（endurance） Clause 4.25	$1000+48 /-0$ hours，loaded with RCWV or Vmax in chamber controller $70 \pm 2^{\circ} \mathrm{C}, 1.5$ hours on and 0.5 hours off	$\Delta \mathrm{R} / \mathrm{R} \max . \pm(3 \%+0.005 \Omega)$
Load life in Humidity Clause 4.24	$1000+48 /-0$ hours，loaded with RCWV or Vmax in humidity chamber controller at $40^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ and $90 \sim 95 \%$ relative humidity， 1.5 hours on and 0.5 hours off	$\Delta \mathrm{R} / \mathrm{R} \max . \pm(3 \%+0.005 \Omega)$
Bending strength Clause 4.33	Resistors mounted on a 90 mm glass epoxy resin PCB（FR4）； bending ： 2 mm ，once for 10 seconds	$\Delta \mathrm{R} / \mathrm{R} \max . \pm(1 \%+0.005 \Omega)$
Adhesion Clause 4.32	Pressurizing force： 5 N ，Test time： $10 \pm 1 \mathrm{sec}$ ．	No remarkable damage or removal of the terminations
Insulation Resistance Clause 4.6	Apply the maximum overload voltage（DC）for 1 minute	$\mathrm{R} \geqq 10 \mathrm{G} \Omega$
Dielectric Withstand Voltage Clause 4.7	Apply the maximum overload voltage（AC）for 1 minute	No breakdown or flashover

PACKAGING

Plastic Tape specifications（unit ：mm）

Symbol	A	B	W	F	E
2512	6.90 ± 0.20	3.60 ± 0.20			
2010	5.50 ± 0.20	2.80 ± 0.20	12.00 ± 0.30	5.50 ± 0.1	1.75 ± 0.10
1218	4.90 ± 0.20	3.55 ± 0.30			

Symbol	P 1	P 0	$\Phi \mathrm{D}$	T
2512	4.00 ± 0.10	4.00 ± 0.10		$\Phi 1.50_{-0.0}^{+0.1}$

Reel dimensions

（unit $: \mathrm{mm}$ ）	A	B	C	D
$7 "$ reel	$\Phi 178.0 \pm 2.0$	$\Phi 60.0 \pm 1.0$	13.0 ± 0.2	14.0 ± 0.2
10 ＂reel	$\Phi 254.0 \pm 2.0$	$\Phi 100.0 \pm 1.0$	13.0 ± 0.2	14.0 ± 0.2

Taping quantity

－WW20，WW25 by plastic tape taping 4，000 pcs per 7＂reel／8，000pcs per 10 ＂reel！
－WW18 by plastic tape taping 3,000 pcs per 10 ＂reel

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for MELF Resistors category:
Click to view products by Walsin manufacturer:
Other Similar products are found below :
MMA02040E4709BB100 1-21002-2 SMA0207JTEU8202 231219511009 CSRV0207FTDT0150 CSRV0207FTDT0220
CSRV0207FTDT0330 CSRV0207FTDT0470 CSRV0207FTDT0680 CSRV0207FTDT1001 CSRV0207FTDT1002 CSRV0207FTDT1003
CSRV0207FTDT1500 CSRV0207FTDT1501 CSRV0207FTDT1502 CSRV0207FTDT1503 CSRV0207FTDT1504 CSRV0207FTDT1960
CSRV0207FTDT2200 CSRV0207FTDT2201 CSRV0207FTDT2202 CSRV0207FTDT2203 CSRV0207FTDT2204 CSRV0207FTDT3300
CSRV0207FTDT3303 CSRV0207FTDT3304 CSRV0207FTDT3921 CSRV0207FTDT4700 CSRV0207FTDT4702 CSRV0207FTDT5603
CSRV0207FTDT6800 CSRV0207FTDT6801 CSRV0207FTDT6802 CSRV0207FTDT6803 CSRV0207FTDT8201 CSRV0207FTDU0100
CSRV0207FTDU0220 CSRV0207FTDU0470 CSRV0207FTDU1001 CSRV0207FTDU1002 CSRV0207FTDU1003 CSRV0207FTDU2201
CSRV0207FTDU2202 CSRV0207FTDU2203 CSRV0207FTDU2204 CSRV0207FTDU2210 CSRV0207FTDU4700 CSRV0207FTDU4701
CSRV0207FTDU4702 CSRV0207FTDU4703

