Key Features

- 30 ~ 250 MHz
- 2 ~ 4 dB noise figure
- 49.0 dBm output IP₃
- 38.0 dB Gain
- +/-0.50 dB Gain Flatness
- 35 dBm P1dB
- 1.5:1 VSWR
- Single Power Supply
- >34 years MTBF
- Unconditional stable
- RoHS compliant

Product Description

WPM0003F integrates WanTcom proprietary low noise amplifier technology, high frequency micro electronic assembly techniques, and high reliability design to realize optimum low noise figure, wideband, high linearity, and unconditional stable performances together. With single +10.0V DC operation, the amplifier has optimal input and output matching in the specified frequency range at 50-Ohm impedance system. The amplifier has standard WanTcom WPM-1 gold plated pallet.

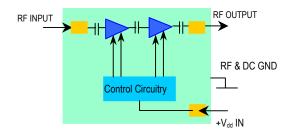
The amplifier is designed to meet the rugged standard of MIL-STD-202.

Applications

- Mobile Infrastructures
- VHF, FM
- CATV
- Security System
- Measurement
- PA Driver

Specifications

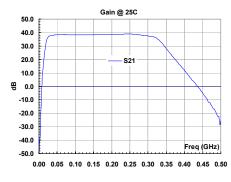
Summary of the electrical specifications WPM0003F at room temperature

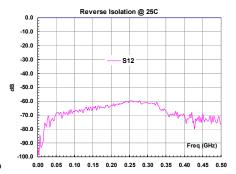

Index	Testing Item	Symbol	Test Constraints	Min	Nom	Max	Unit
1	Gain	S ₂₁	30 – 250 MHz		38		dB
2	Gain Variation	ΔG	30 – 250 MHz		+/- 0.5	+/-1.0	dB
3	Input VSWR	SWR ₁	30 – 250 MHz		1.35:1	1.8:1	Ratio
4	Output VSWR	SWR ₂	30 – 250 MHz		1.5:1	2:1	Ratio
5	Reverse Isolation	S ₁₂	30 – 250 MHz		60		dB
6	Noise figure	NF	30 – 250 MHz		2.0	4.5	dB
7	Output Power 1dB compression Point	P _{1dB}	30 – 250 MHz	34	35		dBm
8	Output-Third-Order Interception point	IP ₃	Two-Tone, P _{out} +26 dBm each, 1 MHz separation	45	49		dBm
9	Current Consumption	I _{dd}	V _{dd} = +10 V		950		mA
10	Power Supply Voltage	V_{dd}		+9.5	+10	+10.5	V
11	Thermal Resistance	R _{th,c}	Junction to case			8	°C/W
12	Operating Temperature	To		-40		+85	°C
13	Maximum Average RF Input Power	P _{IN, MAX}	0.2 – 4.2 GHz			20	dBm

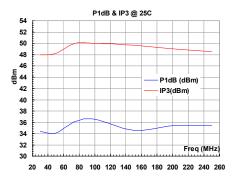
Absolute Maximum Ratings

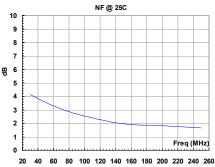
Parameters	Units	Ratings
DC Power Supply Voltage	V	12
Drain Current	Α	1.1
Total Power Dissipation	W	12
RF Input Power	dBm	20
Channel Temperature	°C	150
Storage Temperature	°C	-55 ~ 125
Operating Temperature	°C	-40 ~ 85
Thermal Resistance	°C/W	8

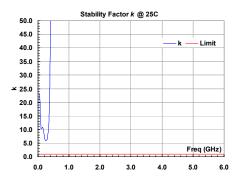
Operation of this device above any one of these parameters may cause permanent damage.


Functional Block Diagram


Ordering Information

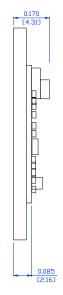

Model Number	Package
WPM0003F	WPM-1
WBPA0003A	WP-6

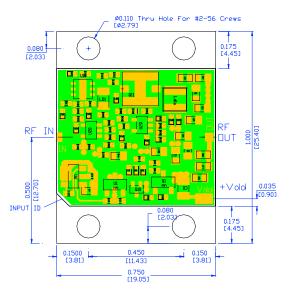

Typical Data



Outline,

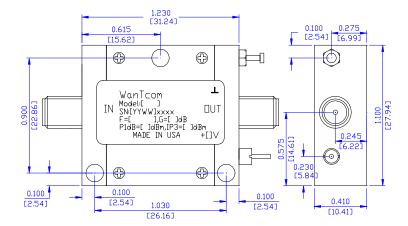
1. WPM-1 Pallet


UNITS:


INCH [mm]

BODY: Finish: RF Launch: V_{dd} PWR:

Brass Gold Plating


Microstrip Feed through

2. WP-6

UNITS: INCH [mm]
BODY: Brass
Finish: Gold Plating
RF Connector: SMA F Gold
V_{dd} PWR: Feed through

Application Notes:

1. WBPA0003A

A. SMA Torque Wrench Selection

Always use a torque wrench with $5 \sim 6$ inch-lb coupling torque setting for mating the SMA cables to the amplifier in WP-6 housing. Never use torque more than 8 inch-lb wrench for tightening the mating cable to the connector. Otherwise, the permanent damage will occur to the SMA connectors of the amplifier. 8710-1582 (5 inch-lb) is one of the ideal torque wrench choice from Agilent Technology.

B. DC Power Line Connection

Strip the insulation layer at the end of DC power supply wire. The stripped distance should be in the range of 0.100" to 0.200". The $24 \sim 26$ American Wire Gauge wire is suitable. Wound the stripped terminal wire about 1 to 2 turns on the DC feed thru center pin. Solder the wounded wire and the center pin together. Clean the soldering area by Q-tip with alcohol to remove the flux and residue.

Repeat the process to solder the DC return wire on the ground turret.

C. Mounting the Amplifier

Use three pieces of #4-40 with longer than 9/16" screws for mounting the amplifier on a metal-based chase or heat sink. The sufficient heat sink is required. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount them.

2. WPM0003F

D. Mounting the Amplifier

Use four pieces of #2-56 or M2.5 with longer than 3/8" screws for mounting the amplifier on a metal-based chase or heat sink. The thermal compound is recommended between the bottom of the pallet and heat sink for maximum heat dissipation. The sufficient heat sink is required. Flat and spring washers are needed to prevent the screw loosening during the shock and vibration. Always use the appropriate torque setting of the power screwdriver to mount the amplifier.

Always be very careful to solder the RF and DC connections to the amplifier. Use 0.01" diameter soldering iron tip to solder the connections. Do not touch any components of the amplifier.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Amplifier category:

Click to view products by Wantcom manufacturer:

Other Similar products are found below:

ADPA7006AEHZ CXE2089ZSR MGA-43828-BLKG A82-1 RF2878TR7 BGA 728L7 E6327 BGB719N7ESDE6327XTMA1 HMC1126-SX HMC342 HMC561-SX HMC598-SX HMC-ALH382-SX HMC-ALH476-SX SE2433T-R SE2622L-R SMA3101-TL-E SMA39 SMA70-1 A66-1 A66-3 A67-1 LX5535LQ LX5540LL RF2373TR7 HMC3653LP3BETR HMC395 HMC549MS8GETR HMC576-SX HMC754S8GETR HMC-ALH435-SX SMA101 SMA1031 SMA181 SMA32 SMA411 SMA531 SST12LP17E-XX8E SST12LP19E-QX6E TGA2598 WPM0510A HMC5929LS6TR HMC5879LS7TR HMC906A-SX HMC1127 HMC544A HMC1126 HMC1110-SX HMC1087F10 HMC1086 HMC1016