SPECIFICATION

Product Type : 66 H3DSHU
Screen Size: 2.6"
Description : Color: Black, White
Display Resolution: 296*152

: DYHKDCH(OFWRQIFV
10F, International Science \& Technology Building, Fuhong Rd,
Futian District, Shenzhen, China
Website: www.waveshare.com

Revision History

Version	Content	Date	Producer
1.0	New release		

CONTENTS

1.Over View. 5
2. Features 5
3. Mechanical Specification 5
4.Mechanical Drawing of EPD Module 6
5. Input/output Pin Assignment. 7
6. Electrical Characteristics 8
6.1 Absolute Maximum Rating 8
6.2 Panel DC Characteristics. 9
6.3 Panel DC Characteristics(Driver IC Internal Regulators) 10
6.4 Panel AC Characteristics 10
6.4.1 MCU Interface Selection. 10
6.4.2 MCU Serial Interface (4-wire SPI) 10
6.4.3 MCU Serial Interface (3-wire SPI) 12
6.4.4 Interface Timing 13
7.Command Table. 15
8. Optical Specification 23
9. Handling, Safety, and Environment Requirements 23
10. Reliability Test 24
11. Block Diagram 24
12. Typical Application Circuit with SPI Interface. 26
13 Typical Operating Sequence 27
13.1Normal Operation Flow 27
13.2 Normal Operation Reference Program Code. 28
13.3 OTP Operation Flow 29
13.4 OTP Operation Reference Program Code 30
14. Inspection condition. 31
14.1 Environment 31
14.2 Illuminance. 31
14.3 Inspect method 31
14.4 Display area 31
14.5 Inspection standard 31
14.5.1 Electric inspection standard 32
14.5.2 Appearance inspection standard 33

1. Over View

This is an Active Matrix Electrophoretic Display (AM EPD), with interfaceand a reference system design. The display is capable to display images at 1-bit white, black and redfull display capabilities. The 2.66 inch active area contains 296×152 pixels. The module is aTFT-array driving electrophoresis display, with integrated circuits including gate driver, sourcedriver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can beused in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- 296×152pixels display
- High contrast High reflectance
- Ultra wide viewing angle Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Waveform can stored in On-chip OTP or written by MCU
-Serial peripheral interface available
On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
$-I^{2} \mathrm{C}$ signal master interface to read external temperature sensor
Built-in temperature sensor

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	2.66	Inch	
Display Resolution	$152(\mathrm{H}) \times 296(\mathrm{~V})$	Pixel	DPI:125
Active Area	30.704×60.088	mm	
Pixel Pitch	0.202×0.203	mm	
Pixel Configuration	Rectangle		
Outline Dimension	$36.304(\mathrm{H}) \times 71.820(\mathrm{~V}) \times 1.0(\mathrm{D})$	mm	
Weight	4.7 ± 0.5	g	

4.Mechanical Drawing of EPD Module

share awesome hardware

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	O	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	C	Positive Source driving voltage(Red)	
6	TSCL	O	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	O	Busy state output pin	Note 5-4
10	RES\#	I	Reset signal input. Active Low.	Note 5-3
11	D/C\#	I	Data /Command control pin	Note 5-2
12	CS\#	I	Chip select input pin	Note 5-1
13	SCL	I	Serial Clock pin (SPI)	
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	C	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	C	Positive Source driving voltage	
21	VGH	C	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	C	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

$I=$ Input Pin, $O=$ Output Pin, $/ O=$ Bi-directional Pin (Input/output), $\mathbf{P}=$ Power Pin, $C=$ Capacitor Pin
Note 5-1: This pin (CS\#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS\# is pulled LOW.
Note 5-2: This pin is (D/C\#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.

Note 5-3: This pin (RES\#) is reset signal input. The Reset is active low.
Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor
Note 5-5: Bus interface selection pin

BS1 State	MCU Interface
L	4-lines serial peripheral interface(SPI) -8 bits SPI
H	3- lines serial peripheral interface(SPI) -9 bits SPI

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	0 to +50	${ }^{\circ} \mathrm{C}$.
Storage Temp range	TSTG	-25 to +70	${ }^{\circ} \mathrm{C}$.
Optimal Storage Temp	TSTGo	25 ± 2	${ }^{\circ} \mathrm{C}$.
Optimal Storage Humidity	HSTGo	55 ± 10	$\%$ RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=3.0 \mathrm{~V}$, $\mathrm{TOPR}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Condition	Applicab le pin	Min.	Typ.	Max.	Unit
Single ground	Vss	-		-	0	-	V
Logic supply voltage	Vcı	-	VCI	2.2	3.0	3.7	V
Core logic voltage	VDD		VDD	1.7	1.8	1.9	V
High level input voltage	$\mathrm{V}_{\text {IH }}$	-	-	0.8 VCI	-	-	V
Low level input voltage	VIL	-	-	-	-	0.2 VCl	V
High level output voltage	Vон	$\mathrm{IOH}=-100 \mathrm{uA}$	-	0.9 VCI	-	-	V
Low level output voltage	Vol	$\mathrm{IOL}=100 \mathrm{uA}$	-	-	-	0.1 VCI	V
Typical power	PTYP	$\mathrm{V}_{\mathrm{CI}}=3.0 \mathrm{~V}$	-	-	9.0	-	mW
Deep sleep mode	Pstry	$\mathrm{VCI}=3.0 \mathrm{~V}$	-	-	0.003	-	mW
Typical operating current	Iopr_VCI	$\mathrm{VCI}=3.0 \mathrm{~V}$	-	-	3.0		mA
Image update time	-	$25^{\circ} \mathrm{C}$	-	-	3	-	sec
Sleep mode current	Islp_Vcı	DC/DC off No clock No input load Ram data retain	-	-	20		uA
Deep sleep mode current	Idslp_VCI	DC/DC off No clock No input load Ram data not retain	-	-	1	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

2.T he deep sleep power is the consumed power when the panel controller is in deep sleep mode.
3.T he listed electrical/optical characteristics are only guaranteed under the controller \& waveform provided by Waveshare.

6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=3.0 \mathrm{~V}, \mathrm{TOPR}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Condition	Applicable pin	Min.	Typ.	Max.	Unit
VCOM output voltage	VCOM	-	VCOM	-	TBD	-	V
Positive Source output voltage	VSH	-	$\mathrm{S}_{0} \sim \mathrm{~S}_{151}$	+14.5	+15	+15.5	V
Negative Source output voltage	VsL	-	$\mathrm{S}_{0} \sim \mathrm{~S}_{151}$	-15.5	-15	-14.5	V
Positive gate output voltage	Vgh	-	$\mathrm{G}_{0} \sim \mathrm{G}_{295}$	+21	+22	+23	V
Negative gate output voltage	Vgl	-	$\mathrm{G} \sim \mathrm{G}_{295}$	-21	-20	-19	V

6.4 Panel AC Characteristics

6.4.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Command Interface		Control Signal		
Bus interface	SDA	SCL	CS\#	D/C\#	RES\#
BS1=L 4-wire SPI	SDA	SCL	CS\#	D/C\#	RES\#
BS1=H 3-wire SPI	SDA	SCL	CS\#	L	RES\#

6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C\#, CS\#. This interface supports Write mode and Read mode.

Function	CS\#	D/C\#	SCL
Write command	L	L	\uparrow
Write data	L	H	\uparrow

Note: \uparrow stands for rising edge of signal
In the write mode SDA is shifted into an 8 -bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C\# should be kept over the whole byte . The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to $\mathrm{D} / \mathrm{C} \#$ pin.

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

1. After driving CS\# to low, MCU need to define the register to be read.
2. SDA is shifted into an 8 -bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C\# keep low.
3. After SCL change to low for the last bit of register, $\mathrm{D} / \mathrm{C} \#$ need to drive to high.
4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, .. D0.
5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS\# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.4.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS\#. This interface also supports Write mode and Read mode.

The operation is similar to 4 -wire serial interface while $\mathrm{D} / \mathrm{C} \#$ pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C\# bit, D7 to D0 bit. The D/C\# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C\# bit $=1$) or the command register ($\mathrm{D} / \mathrm{C} \#$ bit $=0$).

Function	$\mathbf{C S} \#$	D/C\#	SCL
Write command	L	Tie	\uparrow
Write data	L	Tie	\uparrow

Note: \uparrow stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

1. After driving CS\# to low, MCU need to define the register to be read.
2. $\mathrm{D} / \mathrm{C}=0$ is shifted thru SDA with one rising edge of SCL
3. SDA is shifted into an 8 -bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
4. $\mathrm{D} / \mathrm{C}=1$ is shifted thru SDA with one rising edge of SCL
5. SDA is shifted out an 8 -bit data on every falling edge of SCL in the order of D7, D6, .. D0.
6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS\# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

6.4.4 Interface Timing

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCI}=3.0 \mathrm{~V}$, $\operatorname{TopR}=25^{\circ} \mathrm{C}$.

Serial Interface Timing Characteristics

$\left(\mathrm{VCI}-\mathrm{VSS}=2.2 \mathrm{~V}\right.$ to $\left.3.7 \mathrm{~V}, \mathrm{TOPR}=25^{\circ} \mathrm{C}, \mathrm{CL}=20 \mathrm{pF}\right)$

Write mode

Symbol	Parameter	Min	Typ.	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	60			ns
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CS\# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25			ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns

Read mode

Symbol	Parameter	Min	Typ.	Max	Unit
fSCL	SCL frequency (Read Mode)		2.5	MHz	
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	100		ns	
tCSHLD	Time CS\# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS\# has to remain high between two transfers	250	180		ns
tSCLHIG H	Part of the clock period where SCL has to remain high	180	ns		
tSCLLOW	Part of the clock period where SCL has to remain low		ns		
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

7.Command Table

R/W\#	D/C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Comman d	Description
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setting Set A[8:0]=0097h Set B[8:0]=00h
0	1		A7	A6	A5	A4	A3	A2	A1	A0		
0	1		0	0	0	0	0	0	0	A8		
0	1		0	0	0	0	0	B2	B1	B0		
0	0	03	0	0	0	0	0	0	1	1	Gate Driving voltage control	SetGate Driving voltage A[4:0]=17h[POR],VGH at 20V[POR] VGH setting from 10 V to 20 V
0	1		0	0	0	A4	A3	A2	A1	A0		
0	0	04	0	0	0	0	0	1	0	0	Source Driving voltage control	SetSource Driving voltage $\mathrm{A}[7: 0]=41 \mathrm{~h}[\mathrm{POR}], \mathrm{VSH} 1$ at 15 V $\mathrm{B}[7: 0]=\mathrm{A} \mathrm{Ch}[\mathrm{POR}], \mathrm{VSH} 2$ at 5.4 V C[7:0]= $32 \mathrm{~h}[\mathrm{POR}], \mathrm{VSL}$ at -15 V
0	1		A7	A6	A5	A4	A3	A2	A1	A0		
0	1		B7	B6	B5	B4	B3	B2	B1	B0		
0	1		C7	C6	C5	C4	C3	C2	C1	C0		
0	0	08	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting The command required CLKEN $=1$. Refer to Register 0x22 for detail. BUSY pad will output high during operation
0	0	09	0	0	0	0	1	0	0	1	Write Register for Initial Code Setting	Write Register for Initial Code Setting Selection A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial Code Setting
0	1		A7	A6	A5	A4	A3	A2	A1	A0		
0	1		B7	B6	B5	B4	B3	B2	B1	B0		
0	1		C7	C6	C5	C4	C3	C2	C1	C0		
0	1		D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control: A[1:0]: Description 00 Normal Mode [POR] 01 Enter Deep Sleep Mode 1 11 Enter Deep Sleep Mode 2 After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	1		0	0	0	0	0	0	0	A_{0}		

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{|c}
0 \\
\\
\\
\\
0
\end{tabular} \& 0 \& 11 \& 0

0 \& 0 \& 0

0 \& 1

0 \& 0

0 \& | 0 |
| :---: |
| |
| |
| $\mathrm{~A}_{2}$ | \& 0

$\mathrm{~A}_{1}$ \& A_{0} \& | Data |
| :--- |
| Entry mode setting | \& | Define data entry sequence |
| :--- |
| $\mathrm{A}[2: 0]=011$ [POR] |
| $\mathrm{A}[1: 0]=\operatorname{ID}[1: 0]$ |
| Address automatic increment / decrement setting |
| The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. |
| 00 - Y decrement, X decrement, |
| 01 - Y decrement, X increment, |
| 10 - Y increment, X decrement, |
| 11 - Yincrement, X increment [POR] |
| $\mathrm{A}[2]=\mathrm{AM}$ |
| Set the direction in which the address counter is updated automatically after data are written to the RAM. |
| $\mathrm{AM}=0$, the address counter is updated in the X direction. [POR] |
| $\mathrm{AM}=1$, the address counter is updated in the Y direction |

\hline
\end{tabular}

0	0	0C	0	0	0	0	1	1	0 0		Booster Soft start Control	Booster Enable with Phase 1, Phase 2 and Phase 3 for soft start current and duration setting. $\mathrm{A}[7: 0]$-> Soft start setting for Phasel $=8 \mathrm{Bh}[\mathrm{POR}]$ $\mathrm{B}[7: 0]$-> Soft start setting for Phase2 $=9 \mathrm{Ch}[\mathrm{POR}]$ C[7:0] -> Soft start setting for Phase3 $=96 \mathrm{~h}[\mathrm{POR}]$ D [7:0] -> Duration setting $=0 \mathrm{Fh}$ [POR] Bit Description of each byte: A[6:0] / B[6:0] / C[6:0]: Bit[6:4] Driving Strength Selection 000 1(Weakest) 0012 0103 0114 1005 $\begin{array}{ll}101 & 6 \\ 110 & 7\end{array}$ 111 8(Strongest) Bit[3:0] Min Off Time Setting of GDR [Time unit] 0000 0011 NA D [5:0]: duration setting of phase D [5:4]: duration setting of phase 3 D [3:2]: duration setting of phase 2 $\mathrm{D}[1: 0]$: duration setting of phase 1 Bit[1:0] Duration of Phase [Approximation] $00 \quad 10 \mathrm{~ms}$ $01 \quad 20 \mathrm{~ms}$ $10 \quad 30 \mathrm{~ms}$ 1140 ms
0	1		1	A6	A5	A4	A3	A2	A1	A0		
0	1		1	B6	B5	B4	B3	B2	B1	B0		
0	1		1	C6	C5	C4	C3	C2	C1	C0		
0	1		0	0	D5	D4	D3	D2	D1	D0		

| 0 | 0 | 12 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | SWRES
 ET | It resets the commands and parameters to
 their S/W Reset default values except
 R10h-Deep Sleep Mode
 During operation, BUSY pad will output |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- |
| high. | | | | | | | | | | | | |
| Note: RAM are unaffected by this | | | | | | | | | | | | |
| command. | | | | | | | | | | | | |

0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White) / RAM	After this command, data entries will be written into the BW RAM until another command is written. Address pointers will advance accordingly For Write pixel: Content of Write RAM(BW) = 1 For Black pixel: Content of Write RAM $(B W)=0$
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) /RAM Ox26)	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) $=1$ For non-Red pixel [Black or White]: Content of Write RAM(RED) $=0$
0	0	2C	0	0	1	0	1	1	0	0	Write	Write VCOM register from MCU interface
0	1		A7	A6	A5	A4	A3	A2	A1	A0	VCOM register	$\mathrm{A}[7: 0]=00 \mathrm{~h}$ [POR]
0	0	2D	0	0	1	0	1	1	0	1	OTP	Read Register for Display Option:
1	1		A7	A6	A5	A4	A3	A2	A1	A0	Register	A[7:0]: VCOM OTP Selection
1	1		B7	B6	B5	B4	B3	B2	B1	B0	Read for Display	(Command 0x37, Byte A) B[7:0]: VCOM Register
1	1		C7	C6	C5	C4	C3	C2	C1	C0	Option	(Command 0x2C)
1	1		D7	D6	D5	D4	D3	D2	D1	D0		C[7:0]~G[7:0]: Display Mode
1	1		E7	E6	E5	E4	E3	E2	E1	E0		(Command 0x37, Byte B to Byte
1	1		F7	F6	F5	F4	F3	F2	F1	F0		7:0]~K[7:0]: Waveform Version
1	1		G7	G6	G5	G4	G3	G2	G1	G0		(Command 0x37, Byte G to Byte J)
1	1		H7	H6	H5	H4	H3	H2	H1	H0		[4 bytes]
1	1		I7	I6	I5	I4	I3	I2	I1	I0		
1	1		J7	J6	J5	J4	J3	J2	J1	J0		
1	1		K7	K6	K5	K4	K3	K2	K1	K0		

8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Typ.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	$\%$	$8-1$
CR	Contrast Ratio	indoor	$8: 1$		-		$8-2$
GN	2Grey Level	-	-	DS $+($ WS-DS $) * n(m-1)$			$8-3$
T update	Image update time	at $25^{\circ} \mathrm{C}$	-	3	-	sec	
Life		Topr		1000000 times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

8-2. \quad CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
8-3 WS: White state, DS: Dark state

9. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status		
Product specification	This data sheet contains final product specifications.	
Limiting values		
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. \quad Exposure to limiting values for extended periods may affect device reliability.		
Application information		
Where application information is given, it is advisory and does not form part of the specification.		

10. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	$\begin{aligned} & \mathrm{T}=-25^{\circ} \mathrm{C}, 240 \mathrm{~h} \\ & \text { Test in white pattern } \end{aligned}$
2	High-Temperature Storage	$\mathrm{T}=+70^{\circ} \mathrm{C}, \mathrm{RH}=40 \%, 240 \mathrm{~h}$ Test in white pattern
3	High-Temperature Operation	$\mathrm{T}=+50^{\circ} \mathrm{C}, \mathrm{RH}=30 \%, 240 \mathrm{~h}$
4	Low-Temperature Operation	$0^{\circ} \mathrm{C}, 240 \mathrm{~h}$
5	High-Temperature, High-Humidity Operation	$\mathrm{T}=+40^{\circ} \mathrm{C}, \mathrm{RH}=90 \%, 240 \mathrm{~h}$
6	High Temperature, High Humidity Storage	$\mathrm{T}=+60^{\circ} \mathrm{C}, \mathrm{RH}=80 \%, 240 \mathrm{~h}$ Test in white pattern
7	Temperature Cycle	1 cycle: $\left[-25^{\circ} \mathrm{C} 30 \mathrm{~min}\right] \rightarrow\left[+70^{\circ} \mathrm{C} 30 \mathrm{~min}\right]: 100$ cycles Test in white pattern
8	UV exposure Resistance	$765 \mathrm{~W} / \mathrm{m}^{2}$ for $168 \mathrm{hrs}, 40^{\circ} \mathrm{C}$ Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display,no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display,including IC and FPC area)

Note: Put in normal temperature for 1 hour after test finished, display performance is $\mathbf{o k}$.

11. Block Diagram

12. Typical Application Circuit with SPI Interface

Part Name	Value	Reference Part		Requirements for spare part
C4 C7	1 uF	0603;X5R/X7R;Voltage Rating:6v or 25v		
$\begin{gathered} \text { C1 C2 C3 C6 } \\ \text { C8 C9 } \end{gathered}$	1 uF	0603/0805; X5R/X7R;Voltage Rating:25v		
C10	$0.47 \mathrm{uF} / 1 \mathrm{uF}$	0603/0805; X7R;Voltage Rating:25v NOTE: Effective capacitance $>0.25 u F @ 18 v$ DC bias		
R1	2.2Ohm	0805; 1\%		
D4 D5 D6	Diode	MBR0530	1)Reverse DC 2) $\mathrm{Io}=500 \mathrm{~mA}$ 3)Forward volt	$\begin{aligned} & \text { ltage }=30 \mathrm{~V}(\max) \\ & \mathrm{e}=430 \mathrm{mV}(\max) \end{aligned}$
Q1	NMOS	Si1304BDL/NX3008N13K	1)Drain-Source 2) $\mathrm{Vgs}(\mathrm{th})=0.9$ 3)rds on $\leq 2.1 \Omega$	$\begin{aligned} & \text { reakdown voltage }=30 \mathrm{v}(\mathrm{~min}) \\ & \mathrm{Typ}), 1.3 \mathrm{v}(\mathrm{Max}) \\ & \text { Vgs }=2.5 \mathrm{v} \end{aligned}$
L2	47 UH	CDRH2D18/LDNP-470NC	1) $\mathrm{Io}=500$ (max)	

13 Typical Operating Sequence

13.1Normal Operation Flow

13.2 Normal Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT
POWER ON		
delay	10 ms	
PIN CONFIG		
RESE\#	low	Hardware reset
delay	200us	
RESE\#	high	
delay	200us	
Read busy pin		Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
Command 0x01	Data 0x27 0x01 0x00	Set display size and driver output control
Command 0x11	Data 0x01	Ram data entry mode
Command 0x44	Data 0x00 0x12	Set Ram X address
Command 0x45	Data 0x27 0x01 0x00 0x00	Set Ram Y address
Command 0x3C	Data 0x05	Set border
SET VOLTAGE AND LOAD LUT		
Command 0x2C	Data 0x36	Set VCOM value
Command 0x03	Data 0x17	Gate voltage setting
Command 0x04	Data 0x41 0x00 0x32	Source voltage setting
Command 0x32	Write 153bytes LUT	Load LUT
LOAD IMAGE AND UPDATE		
Command 0x4E	Data 0x00	Set Ram X address counter
Command 0x4F	Data 0x27 0x01	Set Ram Y address counter
Command 0x24	5624bytes	Load BW image (152/8*296)(BW)
Command 0x22	Data 0XC7	Image update
Command 0x20		
Read busy pin		Wait for busy low
Command 0x10	Data 0X01	Enter deep sleep mode

13.3 OTP Operation Flow

13.4OTP Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT
POWER ON		
delay	10 ms	
PIN CONFIG		
RESE\#	low	Hardware reset
delay	200us	
RESE\#	high	
delay	200us	
Read busy pin		Wait for busy low
Command 0x12		Software reset
Read busy pin		Wait for busy low
SET VOLTAGE AND LOAD LUT		
LOAD IMAGE AND UPDATE		
Command 0x24	5624bytes	Load BW image (152/8*296)(BW)
Command 0x20		
Read busy pin		Wait for busy low
Command 0x10	Data 0X01	Enter deep sleep mode

14. Inspection condition

14.1 Environment

Temperature: $25 \pm 3^{\circ} \mathrm{C}$
Humidity: $55 \pm 10 \% \mathrm{RH}$

14.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45° surround.

14.3 Inspect method

14.4 Display area

14.5 Inspection standard

14.5.1 Electric inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA	Visual inspection Visual/ Inspection card	Zone A
2	Black/White spots	$\mathrm{D} \leq 0.25 \mathrm{~mm}$, Allowed $0.25 \mathrm{~mm}<\mathrm{D} \leq 0.4 \mathrm{~mm}$ 。 $\mathrm{N} \leq 3$, and Distance $\geq 5 \mathrm{~mm}$ $0.4 \mathrm{~mm}<$ D Not Allow	MI		
3	Black/White spots (No switch)	$\mathrm{L} \leq 0.6 \mathrm{~mm}, \mathrm{~W} \leq 0.2 \mathrm{~mm}, \mathrm{~N} \leq 1$ $\mathrm{L} \leq 2.0 \mathrm{~mm}, \mathrm{~W}>0.2 \mathrm{~mm}$, Not Allow $\mathrm{L}>0.6 \mathrm{~mm}$, Not Allow			
4	Ghost image	Allowed in switching process	MI	Visual inspection	
5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct			
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

14.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
1	B/W spots /Bubble/ Foreign bodies/ Dents	$\mathrm{D} \leq 0.25 \mathrm{~mm}$, Allowed $0.25 \mathrm{~mm}<\mathrm{D} \leq 0.4 \mathrm{~mm}, \mathrm{~N} \leq 3$ $\mathrm{D}>0.4 \mathrm{~mm}$, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual / Microscope	Zone A Zone B
3	Dirty	Allowed if can be removed	MI		Zone A Zone B
4	Chips/Scratch/ Edge crown	$\mathrm{X} \leq 3 \mathrm{~mm}, \mathrm{Y} \leq 0.5 \mathrm{~mm}$ And without affecting the electrode is permissible $2 \mathrm{~mm} \leq \mathrm{X}$ or $2 \mathrm{~mm} \leq \mathrm{Y} \quad$ Not Allow Widh $\mathrm{W} \leq 0.1 \mathrm{~mm}, \mathrm{~L} \leq 5 \mathrm{~mm}$, No harm to the electrodes and $\mathrm{N} \leqslant 2$ allow	MI	Visual / Microscope	Zone A Zone B

| 5 | TFT Cracks |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad| MA |
| :---: |

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Electronic Paper Displays - ePaper category:
Click to view products by Waveshare manufacturer:
Other Similar products are found below :
PIM534 E2741JS0B2 17779 DEE 172072A-W $13187 \underline{13353} 14410 \underline{14597} \underline{19406} \underline{19408} \underline{14986} \underline{13186} \underline{18401} \underline{15084} \underline{16565} \underline{18057} \underline{E} \underline{E A}$ EPA20-A DEE 600800A-W DFR0369 $10628 \underline{12561} 12563 \underline{12672} \underline{12915} 12955 \underline{12956} 3625 \underline{4086} 409841954196419742434262$ $\underline{4777} \underline{4778} 4814 \underline{000026} \underline{000041} \underline{\text { DEE 400300A2-W DFR0835 DFR0837 DEE 800480A-W EA ELABEL20-A EA EPA43-A EA EPA60-A }}$ 28084 E2154CS0C1 E2154JS0C1 E2260CS021

