SPECIFICATION

Product	2.13inch e-Paper
Description	$2.13^{\prime \prime}$ E-PAPER, B/W
Model Name	2.13 inch e-Paper v2
Date	$2019 / 06 / 13$
Revision	2.0

Table of Contents

1. General Description 4
1.1 Overview 4
1.2 Feature 4
1.3 Mechanical Specification 4
1.4 Mechanical Drawing of EPD module 5
1.5 Input/Output Terminals 6
1.6 Reference Circuit 8
2. Environmental 9
2.1 Handling, Safety and Environmental Requirements... 9
2.2 Reliability test 11
3. Electrical Characteristics 12
3.1 Absolute maximum rating 12
3.2 Panel DC Characteristics 12
3.3 Serial Peripheral Interface Timing 13
3.4 Power Consumption 13
3.5 MCU Interface 14
3.6 Temperature sensor operation 17
4. Typical Operating Sequence 18
4.1 Normal Operation Flow 18
5. Command Table 19
6. Optical characteristics 35
6.1 Specifications 35
6.2 Definition of contrast ratio 36
6.3 Reflection Ratio 36
7. Point and line standard 37
8. Packing 38
9. Precautions 39

Revision History

Rev.	I ssued Date	Revised Contents
1.0	June.26.2018	Preliminary
1.1	Dec.07.2018	Increasing the Brand of components
2.0	May.23.2019	Update the reliability test conditions

1. General Description

1.1 Over View

2.13inch e-Paper is an Active Matrix Electrophoretic Display (AMEPD), with interface and a reference system design. The $2.13^{\prime \prime}$ active area contains 250×122 pixels, and has 1-bit B/W full display capabilities. An integrated circuit contains gate buffer, source buffer, interface, timing control logic, oscillator, DC-DC. SRAM.LUT, VCOM and border are supplied with each panel.

1.2 Features

- Support partial refresh
- 250×122 pixels display
- High contrast
- High reflectance
- Ultra wide viewing angle
- Ultra low power consumption
- Pure reflective mode
- Bi-stable display
- Commercial temperature range
- Landscape, portrait modes
- Hard-coat antiglare display surface
- Ultra Low current deep sleep mode
- On chip display RAM
- Low voltage detect for supply voltage
- High voltage ready detect for driving voltage
- Internal temperature sensor
- 10-byte OTP space for module identification
- Waveform stored in On-chip OTP
- Serial peripheral interface available
- On-chip oscillator
- On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
-12C signal master interface to read external temperature sensor/built-in temperature sensor

1.3 Mechanical Specifications

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	$122(\mathrm{H}) \times 250(\mathrm{~V})$	Pixel	Dpi: 130
Active Area	$23.7(\mathrm{H}) \times 48.55(\mathrm{~V})$	mm	
Pixel Pitch	0.1942×0.1943	mm	
Pixel Configuration	Rectangle		
Outline Dimension	$29.2(\mathrm{H}) \times 59.2(\mathrm{~V}) \times 1.05(\mathrm{D})$	mm	
Weight	3.0 ± 0.2	g	

1.4 Mechanical Drawing of EPD module

1.5 Input/ Output Terminals

Pin \#	Single	Description	Remark
1	NC	No connection and do not connect with other NC pins	Keep Open
2	GDR	N-Channel MOSFET Gate Drive Control	
3	RESE	Current Sense Input for the Control Loop	
4	NC	No connection and do not connect with other NC pins e	Keep Open
5	VSH2	This pin is Positive Source driving voltage	
6	TSCL	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I2C Interface to digital temperature sensor Date pin	
8	BS1	Bus selection pin	Note 1.5-5
9	BUSY	Busy state output pin	Note 1.5-4
10	RES \#	Reset	Note 1.5-3
11	D/C \#	Data / Command control pin	Note 1.5-2
12	CS \#	Chip Select input pin	Note 1.5-1
13	SCL	serial clock pin (SPI)	
14	SDA	serial data pin (SPI)	
15	VDDIO	Power for interface logic pins	
16	VCI	Power Supply pin for the chip	
17	VSS	Ground	
18	VDD	Core logic power pin	
19	VPP	Power Supply for OTP Programming	
20	VSH1	This pin is Positive Source driving voltage	
21	VGH	This pin is Positive Gate driving voltage	
22	VSL	This pin is Negative Source driving voltage	
23	VGL	This pin is Negative Gate driving voltage	
24	VCOM	These pins are VCOM driving voltage	

Note 1.5-1: This pin (CS\#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication: only when CS\# is pulled LOW.
Note 1.5-2: This pin (D/C\#) is Data/Command control pin connecting to the MCU. When the pin is pulled HIGH, the data will be interpreted as data. When the pin is pulled LOW, the data will be interpreted as command.
Note 1.5-3: This pin (RES\#) is reset signal input. The Reset is active low.
Note 1.5-4: This pin (BUSY) is Busy state output pin. When Busy is High the operation of chip should not be interrupted and any commands should not be issued to the module. The driver IC will put Busy pin High when the driver IC is working such as:

- Outputting display waveform; or
- Communicating with digital temperature sensor

Note 1.5-5: This pin (BS1) is for 3 -line SPI or 4 -line SPI selection. When it is "Low", 4-line SPI is selected. When it is "High", 3 -line SPI (9 bits SPI) is selected.

1.6 Reference Circuit

Note :

1. Inductor L1 is wire-wound inductor. There are no special requirements for other parameters.
2. Suggests using Si1304BDL or Si1308EDL TUBE MOS (Q1), otherwise it may affect the normal boost of the circuit.
3. The default circuit is 4 -wire SPI. If the user wants to use 3 -wire SPI
4. Default voltage value of all capacitors is 50 V .

2. Environmental

2.1 HANDLI NG,SAFETYAND ENVI ROMENTAL REQUI REMENTS

WARNI NG
The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

CAUTION

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components.

Disassembling the display module can cause permanent damage and invalidate the warranty agreements.

IPA solvent can only be applied on active area and the back of a glass. For the rest part, it is not allowed.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Mounting Precautions
(1) It`s recommended that you consider the mounting structure so that uneven force (ex. \\ Twisted stress) is not applied to the module. \\ \hline \begin{tabular}{l} (2) It`s recommended that you attach a transparent protective plate to the surface in order to
protect the EPD. Transparent protective plate should have sufficient strength in order to resist
external force.

\hline
\end{tabular}

(3) You should adopt radiation structure to satisfy the temperature specification.
(4) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the PS at high temperature and the latter causes circuit break by electro-chemical reaction.
(5) Do not touch, push or rub the exposed PS with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of PS for bare hand or greasy cloth. (Some cosmetics deteriorate the PS)
(6) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach the PS. Do not use acetone, toluene and alcohol because they cause chemical damage to the PS.
(7) Wipe off saliva or water drops as soon as possible. Their long time contact with PS causes deformations and color fading.

Product specification The data sheet contains final product specifications.

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and dose not form part of the specification.

Product Environmental certification
ROHS
REMARK
All The specifications listed in this document are guaranteed for module only. Post-assembled operation or component(s) may impact module performance or cause unexpected effect or damage and therefore listed specifications is not warranted after any Post-assembled operation.

2.2 Reliability test

	TEST	CONDITION	METHOD	REMARK
1	High-Temperature Operation	$\begin{aligned} & \mathrm{T}=50^{\circ} \mathrm{C} \quad \mathrm{RH}=30 \% \mathrm{RH} \text {, For } \\ & 240 \mathrm{Hr} \end{aligned}$	IEC 60 068-2-2Bb	
2	Low-Temperature Operation	T $=0{ }^{\circ} \mathrm{C}$ for 240 hrs	IEC 60 068-2-2Ab	
3	High-Temperature Storage	$\begin{aligned} & \mathrm{T}=70^{\circ} \mathrm{C} \text { RH }=40 \% \mathrm{RH} \text { For } \\ & 240 \mathrm{Hr} \\ & \text { Test in white pattern } \end{aligned}$	IEC 60 068-2-2Bb	
4	Low-Temperature Storage	$\mathrm{T}=-25^{\circ} \mathrm{C}$, for 240 hrs Test in white pattern	IEC 60 068-2-2Ab	
5	High Temperature, HighHumidity Operation	$\mathrm{T}=40^{\circ} \mathrm{C}, \mathrm{RH}=90 \% \mathrm{RH}$, For 168 Hr	IEC 60 068-2-3CA	
6	High Temperature, High Humidity Storage	$\begin{aligned} & \hline \mathrm{T}=60^{\circ} \mathrm{C}, \mathrm{RH}=80 \% \mathrm{RH}, \text { For } \\ & 240 \mathrm{Hr} \\ & \text { Test in white pattern } \end{aligned}$	IEC 60 068-2-3CA	
7	Temperature Cycle	$\begin{aligned} & -25^{\circ} \mathrm{C}(30 \mathrm{~min}) \sim 70^{\circ} \mathrm{C} \\ & (30 \mathrm{~min}), \quad 100 \mathrm{Cycle} \\ & \text { Test in white pattern } \end{aligned}$	IEC 60 068-2-14NB	
8	Package Vibration	1.04G, Frequency $10 \sim 500 \mathrm{~Hz}$ Direction: X,Y,Zs Duration:1hours in each direction	Full packed for shipment	
9	Package Drop Impact	Drop from height of 122 cm on Concrete surface Drop sequence: 1 corner, 3edges, 6face One drop for each.	Full packed for shipment	
10	UV exposure Resistance	$765 \mathrm{~W} / \mathrm{m}^{2}$ for $168 \mathrm{hrs}, 40^{\circ} \mathrm{C}$	IEC 60068-2-5 Sa	
11	Electrostatic discharge	Machine model: $+/-250 \mathrm{~V}, 0 \Omega, 200 \mathrm{pF}$	IEC61000-4-2	

Actual EMC level to be measured on customer application.
Note1: Stay white pattern for storage and non-operation test.
Note2: Operation is black/white/red pattern, hold time is 150S.
Note3: The function, appearence,opticals should meet the requirements of the test before and after the test. Note4: Keep testing after 2 hours placing at $20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}$.

3. Electrical Characteristics

3.1 ABSOLUTE MAXI MUM RATI NG

Table 3.1-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
VCl	Logic supply voltage	-0.5 to +6.0	V
TOPR	Operation temperature range	0 to 50	${ }^{\circ} \mathrm{C}$
TSTG	Storage temperature range	-25 to 60	${ }^{\circ} \mathrm{C}$
-	Humidity range	$40 \sim 70$	$\% \mathrm{RH}$

Note: Maximum ratings are those values beyond which damages to the device may occur.
Functional operation should be restricted to the limits in the Electrical Characteristics chapter.
Note 3-1: Tstg is the transportation condition, the transport time is within 10 days for $-25^{\circ} \mathrm{C}$
$\sim 0^{\circ} \mathrm{Cor} 50^{\circ} \mathrm{C} \sim 60^{\circ} \mathrm{C}$.

3.2 DC CHARACTERISTICS

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCl}=3.3 \mathrm{~V}, \mathrm{TOPR}=25^{\circ} \mathrm{C}$.
Table 3.2-1: DC Characteristics

Symbol	Parameter	Test	Applicable pin	Min.	Typ.	Max.	Unit
VCl	VCl operation voltage	-	VCl	2.2	3	3.7	V
VIH	High level input	-	SDA, SCL, CS\#,	0.8 VDDIO	-	-	V
	VIL	Low level input voltage	-	$\mathrm{D} / \mathrm{C} \#, \mathrm{RES} \#, \mathrm{BS} 1$	-	-	0.2 VDDI
V							
VOH	High level output	$\mathrm{IOH}=-100 \mathrm{uA}$	BUSY,	0.9 VDDIO	-	-	V
	VOL	Low level output			-	-	0.1 VDDI
V							
Iupdate	Module operating	-	-	-	4.5	-	mA
Isleep	Deep sleep mode	$\mathrm{VCl}=3.3 \mathrm{~V}$	-	-		2	uA

- The Typical power consumption is measured using associated $25^{\circ} \mathrm{C}$ waveform with following pattern transition: from horizontal scan pattern to vertical scan pattern. (Note 3-2)
- The listed electrical/optical characteristics are only guaranteed under the controller \& waveform provided by Waveshare.
- Vcom value will be OTP before in factory or present on the label sticker.

Note 3-2
The Typical power consumption

ШAVESHRRE

3.3 Serial Peripheral I nterface Timing

The following specifications apply for: $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{VCl}=2.2 \mathrm{~V}$ to $3.7 \mathrm{~V}, \mathrm{TOPR}=25^{\circ} \mathrm{C}$
Write mode

Symbol	Parameter	Min Typ	Max	Unit
fSCL	SCL frequency (Write Mode)		20	MHz
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	20		ns
tCSHLD	Time CS\# has to remain Iow after the last falling edge of SCLK	20		
tCSHI GH	Time CS\# has to remain high between two transfers	100		ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25		ns
tSCLLOW	Part of the clock period where SCL has to remain low	25		ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10		
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40		ns

Read mode

Symbol	Parameter	Min	Typ	Max
Unit				
fSCL	SCL frequency (Read Mode)			2.5
tCSSU	Time CS\# has to be low before the first rising edge of SCLK	100		
tCSHLD	Time CS\# has to remain Iow after the Iast falling edge of SCLK	50		
tCSHI GH	Time CS\# has to remain high between two transfers	250		
tSCLHIG	Part of the clock period where SCL has to remain high	180		
tSCLLOW	Part of the clock period where SCL has to remain low	180		
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50	
tSOHLD	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL	$\mathbf{n s}$		

Note: All timings are based on 20% to 80% of VDDIO-VSS

Figure 3.3-1 : Serial peripheral interface characteristics

3.4 Power Consumption

Parameter	Symbol	Conditions	TYP	Max	Unit	Remark
Panel power consumption during update	-	$25^{\circ} \mathrm{C}$	-	18	mAs	-
Deep sleep mode	-	$25^{\circ} \mathrm{C}$	-	2	uA	-

$\mathrm{mAs}=$ update average current \times update time

3.5 MCU I nterface

3.5-1) MCU interface selection

The 2.13inch e-Paper can support 3 -wire/4-wire serial peripheral interface. In the Module, the MCU interface is pin selectable by BS1 pins shown in.

Table 3.5-1: MCU interface selection

BS1	MPU Interface
L	4-lines serial peripheral interface (SPI)
H	3-lines serial peripheral interface (SPI) - 9 bits SPI

3.5-2) MCU Serial Peripheral Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C\# and CS\#, The control pins status in 4-wire SPI in writing command/data is shown in Table 7- 2and the write procedure 4-wire SPI is shown in Figue 7-2.

Table 3.5-2 : Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C\# pin	CS\# pin
Write	\uparrow	Command bit	L	L
Write data	\uparrow	Data bit	H	L

Note:

(1) L is connected to VSS and H is connected to VDDIO
(2) \uparrow stands for rising edge of signal

In the write mode, SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0. The level of D/C\# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to $\mathrm{D} / \mathrm{C} \#$ pin.

Figure 3.5-1: Write procedure in 4-wire SPI mode

In the Read mode:

1. After driving CS\# to low, MCU need to define the register to be read.
2. SDA is shifted into an 8-bit shift register on each rising edge of SCL in the order of D7, D6, ... D0 with D/C\# keep low.
3. After SCL change to low for the last bit of register, D/C\# need to drive to high.
4. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS\# need to drive to high to stop the read operation.

Figure v-2: Read procedure in 4-wire SPI mode

3.5-3) MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS\#. The operation is similar to 4 -wire SPI while D/C\# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 7-3.

Table 3.5-3 : Control pins status of 3-wire SPI

Function	SCL pin	SDA pin	D/ C\# pin	CS\# pin
Write	\uparrow	Command bit	Tie LOW	L
Write data	\uparrow	Data bit	Tie LOW	L

Note:

(1) L is connected to VSS and H is connected to VDDIO
(2) \uparrow stands for rising edge of signal

In the write operation, a 9-bit data will be shifted into the shift register on each clock rising edge. The bit shifting sequence is D/C\# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C\# bit which determines the following byte is command or data. When D/C\# bit is 0 , the following byte is command. When $\mathrm{D} / \mathrm{C} \#$ bit is 1 , the following byte is data. shows the write procedure in 3 -wire SPI

Figure 3.5-3: Write procedure in 3-wire SPI mode
In the Read mode:

1. After driving CS\# to low, MCU need to define the register to be read.
2. $D / C \#=0$ is shifted thru SDA with one rising edge of SCL
3. SDA is shifted into an 8 -bit shift register on each rising edge of SCL in the order of D7, D6, ... D0.
4. $\mathrm{D} / \mathrm{C} \#=1$ is shifted thru SDA with one rising edge of SCL
5. SDA is shifted out an 8-bit data on each falling edge of SCL in the order of D7, D6, ... D0.
6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS\# need to drive to high to stop the read operation.

Figure 3.5-3: Read procedure in 3-wire SPI mode

3.6 Temperature sensor operation

Following is the way of how to sense the ambient temperature of the module. First, use an external temperature sensor to get the temperature value and converted it into HEX format with below mapping table, then send command 0x1A with the HEX temperature value to the module thru the SPI interface.

The temperature value to HEX conversion is as follow:

1. If the Temperature value MSByte bit D11 $=0$, then

The temperature is positive and value (DegC) $=+$ (Temperature value) / 16
2. If the Temperature value MSByte bit D11 = 1, then

The temperature is negative and value $(\mathrm{DegC})=\sim$ (2's complement of Temperature value) / 16

12-bit binary 2's complement)	Hexadecimal Value	Decimal Value	Value [DegC]
011111110000	FF0	2032	127
011111101110	7EE	2030	126.875
011111100010	7E2	2018	126.125
011111010000	$7 D 0$	2000	125
000110010000	190	400	25
000000000010	002	2	0.125
000000000000	000	0	0
111111111110	FFE	-2	-0.125
111001110000	E70	-400	-25
110010010010	C92	-878	-54.875
110010010000	C90	-880	-55

4. Typical Operating Sequence

4.1 Normal Operation Flow

2. Set Initial Configuration

- Define SPI interface to communicate with MCU
- HN Reset
- SW Reset by Command 0x12
- Wait 10 ms

3. Send Initialization Code

- Set gate driver output by Command 0x01
- Set display RAM size by Command $0 \times 11,0 \times 44$, 0×45
- Set panal border by Command Ox3C

4. Load Waveform LUT

- Sense temperature by int/ext TS by Command 0x18
- Load waveform LUT from OTP by Command 0x22, 0×20 or by MCU
- Wait BUSY Low

5. Write Image and Drive Display Panel

- Write image data in RAM by Command Ox4E, Ox4F, $0 \times 24,0 \times 26$
- Set softstart setting by Command 0x0C
- Drive display panel by Command $0 \times 22,0 \times 20$
- Wait BUSY Low

6. Power Off

- Deep sleep by Command 0x10
- Power OFF

END

5. COMMAND TABLE

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4 D3 D2 D1 D0 Command Description							Description					
0	0	04	0	0	0	0	0	1	0	0	0 S	Source	Set Source driving voltage $\mathrm{A}[7: 0]=$ 41h [POR], VSH1 at 15V B[7:0] = A8h [POR], VSH2 at $5 \mathrm{~V} . \mathrm{C}[7: 0]=32 \mathrm{~h}$ [POR], VSL at-15V					
0	1		A7	A6	A5	A4	A3	A2	A1	A0								
0	1		B7	B6	B5	B4	B3	B2	B1	B0								
0	1		C7	C6	C5	C4	C3	C2	C1	CO		voltage Control						
$\mathrm{A}[7] / \mathrm{B}[7]=1,$ VSH1/VSH2 voltage setting from 2.4 V to 8.8 V							$\mathrm{A}[7] / \mathrm{B}[7]=0,$ VSH1/VSH2 voltage setting from 9 V to 17 V							$\mathrm{C}[7]=0,$ VSL setting from -9 V to -17 V				
$\begin{aligned} & \mathrm{A} / \mathrm{B} \\ & : 00 \end{aligned}$	2		$\begin{array}{l\|l} \hline \mathrm{A} / \mathrm{B}[7: & \mathrm{VSH} / \mathrm{VSH} \\ 0] & 2 \\ \hline \end{array}$															
8Eh	2.4		AFh	5.7			$\begin{aligned} & \mathrm{A} / \mathrm{B}[7 \\ & : 0] \end{aligned}$	$\begin{aligned} & \text { VSH1/ } \\ & \text { VSH2 } \end{aligned}$		$\begin{array}{lll} \hline \mathrm{A} / \mathrm{B}[7 & \mathrm{VSH} \\ : 0] & 1 / \mathrm{VS} \end{array}$				C[7:0]	VSL			
8Fh	2.5		B0h	5.8								1Ah	-9					
90h	2.6		B1h	5.9			23h	9				3Ch	14			1Ch	-9.5	
91h	2.7		B2h	6			24h	9.2		3Dh	14.2			1Eh	-10			
92h	2.8		B3h	6.1			25h	9.4		3Eh	14.4			20h	-10.5			
93h	2.9		B4h	6.2			26h	9.6	3Fh		14.6			22h	-11			
94h	3		B5h	6.3			27h	9.8		40h	14.8			24h	-11.5			
95h	3.1		B6h	6.4			28h	10	41h		15			26h	-12			
96h	3.2		B7h	6.5			29h	10.2		42 h	15.2			28h	-12.5			
97h	3.3		B8h	6.6			2Ah	10.4	43h		15.4			2Ah	-13			
98h	3.4		B9h	6.7			2Bh	10.6		44h	15.6			2 Ch	-13.5			
99h	3.5		BAh	6.8			2Ch	10.8	45 h		15.8			2 Eh	-14			
9Ah	3.6		BBh	6.9			2Dh	11		46h	16			30h	-14.5			
9Bh	3.7		BCh	7			2 Eh	11.2		47h	16.2			32h	-15			
9 Ch	3.8		BDh	7.1			2 Fh	11.4	48h		16.4			34h	-15.5			
9Dh	3.9		BEh	7.2			30 h	11.6		49 h	16.6			36 h	-16			
9Eh	4		BFh	7.3			31 h	11.8	4Ah		16.8			38h	-16.5			
9Fh	4.1		COh	7.4			32 h	12	4Bh		17			3Ah	-17			
AOh	4.2		C1h	7.5			33h	12.2	Other		NA			Other	NA			
A1h	4.3		C2h	7.6			34h	12.4										
A2h	4.4		C3h	7.7			35h	12.6										
A3h	4.5		C4h	7.8			36h	12.8										
A4h	4.6		C5h	7.9			37h	13										
A5h	4.7		C6h	8			38h	13.2										
A6h	4.8		C7h	8.1			39h	13.4										
A7h	4.9		C8h	8.2			3Ah	13.6										
A8h	5		C9h	8.3			3Bh	13.8										
A9h	5.1		CAh	8.4														
AAh	5.2		CBh	8.5														
ABh	5.3		CCh	8.6														
ACh	5.4		CDh	8.7														
ADh	5.5		CEh	8.8														
AEh	5.6		Other	NA														

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	08	0	0	0	0	1	0	0	0	$\begin{gathered} \text { User Command } \\ \text { OTP } \\ \text { Program } \end{gathered}$	Program User Command Setting The command required CLKEN $=1$. Refer to Register 0×22 for detail. BUSY pad will output high during operation.
0	0	09	0	0	0	0	1	0	0	1	Write Register Write Register for User Command for User Selection Command A[7:0] \sim D[7:0]: Reserved Details refer to Application Notes of User Command Setting	
0	1		A7	A6	A5	A4	A3	A2	A1	A0		
0	1		B7	B6	B5	B4	B3	B2	B1	B0		
0	1		C7	C6	C5	C4	C3	C2	C1	C0		
0	1		D7	D6	D5	D4	D3	D2	D1	D0		
0	0	OA	0	0	0	0	1	0	1	0	Read Register for User Command	Read Register for User Command

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required $C L K E N=1$ and ANALOGEN=1. Refer to Register 0×22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).
0	1		0	A6	A5	A4	A3	A2	A1	A0		A[6:4]=n for CD time: $10 \mathrm{~ms} \times \mathrm{n}$ A[2:0]=m for Loop time $m+1$ The max HV ready duration is ($10 \mathrm{~ms} x$ A[6:4]) $x(m+1)$ HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as $00 h$.
0	0	15	0	0	0	1	0	1	0	1	VCI Detection VCI Detection A[2:0] $=100$ [POR] , Detect level at 2.3V A[2:0]: VCI level Detect	
0	1		0	0	0	0	0	A2	A1	A0		
												$\mathrm{A}[2: 0]$ VCl level
												011 2.2 V
												100 2.3V
												101 2.4 V
												110 2.5V
												111 2.6 V
												Other \quad NA
												LKEN=1 and

The command required CLKEN=1 and ANALOGEN=1
Refer to Register 0×22 for detail. After this command initiated, VCl detection starts.
BUSY pad will output high during detection.
The detection result can be read from the Status Bit Read (Command 0x2F).

0	0	18	0	0	0	1	1	0	0	0	TemperatureTemperature Sensor Selection Tem
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Sensor Control $A[7: 0]=48 h$ [POR], external temperatrure sensor A[7:0] $=80 h$ Internal temperature

0	0	1A	0	0	0	1	1	0	1	0	Temperature Write to temperature register. Write Sensor Control to temperature register. [POR] (Write to temperature 	
0	1		A11	A10	A9	A8	A7	A6	A5	A4		
0	1		A3	A2	A1	A0	0	0	0	0		
0	0	1B	0	0	0	1	1	0	1	1	Temperature	Read from temperature register.
0	1		A11	A10	A9	A8	A7	A6	A5	A4	Sensor Control	
0	1		A3	A2	A1	A0	0	0	0	0	(Read from temperature register)	

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	24	0	0	1	0	0	1	0	0	Write RAM (BW)	After this command, data entries will bewritten into the BW RAM until anothercommand is written. Address pointers willadvance accordingly For Write pixe:: Content of Write RAM(BW) $=1$ For
Black pixel:												
Content of Write RAM(BW) $=0$												

0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)

After this command, data entries will bewritten into the RED RAM until anothercommand is written. Address pointers willadvance accordingly.

For Red pixel:

Content of Write RAM(RED) = 1
For non-Red pixel [Black or White]:
Content of Write RAM(RED) $=0$

0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM [According to parameter of Register 41h to select reading RAM(BW) / RAM(RED)], until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and holdfor duration defined in 29h before readingVCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	29	0									
0	1	29	0	1	0	0	A3	A2	A1	A0	Duration	Stabling time between entering VCOMsensing mode and reading acquired. A[3:0] $=09 \mathrm{~h}[\mathrm{POR}]$, duration $=10 \mathrm{~s}$. VCOM sense duration $=(A[3: 0]+1)$ sec

R/ W \#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Describtion
0	0	2E	0	0	1	0	1	1	1	0	User ID Read	Read 10 Byte User ID stored in OTP:
1	1		A7	A6	A5	A4	A3	A2	A1	A0		A[7:0]]~J[7:0]: UserID (R38, Byte A
1	1		B7	B6	B5	B4	B3	B2	B1	B0		and Byte J) [10 bytes]
1	1		C7	C6	C5	C4	C3	C2	C1	CO		
1	1		D7	D6	D5	D4	D3	D2	D1	D0		
1	1		E7	E6	E5	E4	E3	E2	E1	E0		
1	1		F7	F6	F5	F4	F3	F2	F1	F0		
1	1		G7	G6	G5	G4	G3	G2	G1	G0		
1	1		H7	H6	H5	H4	H3	H2	H1	H0		
1	1		17	16	15	14	13	12	11	10		
1	1		17	16	J5	J4	13	12	J1	10		

0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read Read IC status Bit [POR 0x01]
1	1		0	0	A5	A4	0	A2	A1	A0	A[5]: HV Ready Detection flag

A[5]: HV Ready Detection flag [POR=0]
0: Ready
1: Not Ready
A[4]: VCI Detection flag [POR=0]
0: Normal
1: VCl lower than the Detect level A[3]: [POR=0]
A[2]: Busy flag [POR=0]
0 : Normal
1: BUSY
A[1:0]: Chip ID [POR=01]
Remark:
$A[5]$ and $A[4]$ status are not valid after RESET, they need to be initiated by command 0×14 and command 0×15 respectively.

0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN $=1$. Refer to Register Ox22 for detail. BUSY pad will output high during operation.

| 0 | 0 | 32 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | Write LUT |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | | Write LUT register from MCU interface |
| :--- |
| [100 bytes], which contains the |
| [10 |
| 0 |

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	DO	Command	Description
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command for OTP content validation. For details, please refer to SSD1675B application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status	CRC Status Read
1	1		A15	A14	Al3	A12	Al1	A10	A9	A8	Read	A[15:0] is the CRC read out value
1	1		A7	A6	A5	A4	A3	A2	A1	A0		
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h] The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	1	37	0	0	1	1	0	1	1	1	Write Register	Write Register for Display Option
0	1		0	0	0	0	0	0	0	0	for	B[7:0] Display Mode for WS[7:0]
0	1		B7	B6	B5	B4	B3	B2	B1	B0	Display Option	C[7:0] Display Mode for WS[15:8]
0	1		C7	C6	C5	C4	C3	C2	C1	C0		D[7:0] Display Mode for WS[23:16]
0	1		D7	D6	D5	D4	D3	D2	D1	D0		E[7:0] Display Mode for WS[31:24]
0	1		E7	E6	E5	E4	E3	E2	E1	E0		F[3:0] Display Mode for WS[35:32] 0:
0	1		F7	F6	F5	F4	F3	F2	F1	F0		Display Mode 1 [POR]
0	1		G7	G6	G5	G4	G3	G2	G1	G0		1: Display Mode2
0	1		H7	H6	H5	H4	H3	H2	H1	H0		F[6]: PingPong for Display Mode 2
0	1		17	16	15	14	13	12	11	10		0 : RAM ping-pong disable [POR]
0	1		J7	J6	J5	J4	J3	J2	J1	J0		1: RAM ping-pong enable G[7:0]~J[7:0] module ID /waveform version. Remarks: 1) $A[7: 0] \sim J[7: 0]$ can be stored in OTP 2) RAM ping-pong function is not sunnort for Disblav Mode 1
0	0	38	0	0	1	1	1	0	0	0	Write Register	Write Register for User ID
0	1		A7	A6	A5	A4	A3	A2	A1	A0	for User	A[7:0]] J[7:0]: UserID [10 bytes]
0	1		B7	B6	B5	B4	B3	B2	B1	B0	ID	Remarks: A [7:0] J [7:0] can be
0	1		C7	C6	C5	C4	C3	C2	C1	C0		stored in OTP
0	1		D7	D6	D5	D4	D3	D2	D1	D0		
0	1		E7	E6	E5	E4	E3	E2	E1	E0		
0	1		F7	F6	F5	F4	F3	F2	F1	F0		
0	1		G7	G6	G5	G4	G3	G2	G1	G0		
0	1		H7	H6	H5	H4	H3	H2	H1	H0		
0	1		17	16	15	14	13	12	11	10		
0	1		17	16	15	J4	13	$J 2$	J1	10		

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	39	0	0	1	1	1	0	0	1	OTP programmode	OTP program mode OTP program
0	1		0	0	0	0	0	0	0	0		mode A[1:0] = 11: Internal generated OTP A[1:0] = 11: Internal generated OTP programming voltage Remark: User is required to EXACTLY
0	0	3A	0	0	1	1	1	0	1	0	Set dummy lineSet number of dummy line period period A[6:0] $=30 \mathrm{~h}$ [POR] A[6:0]: Number of dummy line period in term of TGate Available setting 0 to 127 .	
0	1		0	A6	A5	A4	A3	A2	A1	A0		

0	0	3B	0	0	1	1	1	0	1	1	Set Gate line	Set Gate line width (TGate) A[3:0] =
0	1		0	0	0	0	A3	A2	A1	A0	width	1010 [POR] Remark: Default value will give 50 Hz Frame frequency under 48 dummy line pulse setting.
$\begin{aligned} & \text { Frame Frequency } \\ & {[\mathrm{Hzl}} \end{aligned}$			$\begin{aligned} & \text { Parameter of } \\ & 0 \times 3 A \\ & 0 \times 29 \\ & \hline \end{aligned}$			Parameter of 0x3B						
25						0x0E						
30			0x46			0x0D						
35			0x48			0x0D						
40			0×48			0x0C						
45			0x28			0x0C						
50			0x0F			0x0C						
55			0×37			0x0B						
60			0×21			0x0B						
65			0x0E			0x0B						
70			0x22			0x0A						
75			0×11			0x0A						
80			0×03			0x0A						
85			0x17			0x09						
90			0x0A			0x09						
95			0×26			0x08						
100			$0 \times 1 \mathrm{~A}$			0x08						
105			0x0E			0x08						
110			0x04			0x08						
115			0x1D			0x07						
120			0×13			0x07						
125			$0 \times 0 \mathrm{~A}$			0x07						
130			0x01			0x06						
135			0x22			0x06						
145			0×11			0×06						
150			0x0A			0x06						
155			0×03			0x06						
160			0x1C			0x05						
165			0×15			0x05						
170			0x0E			0x05						
175			0×07			0x05						
180			0x01			0x05						
185			0×21			0x04						
190			0x1B			0x04						
195			0x15			0x04						
200			0x0F			0x04						
Remark: Frame rate setting depends on resolution.												

share awesome hardware

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command		Des	cription	
0	0	46	1	0	0	0	0	1	1	0	Auto Write RED RAM Auto Write RED RAM	Auto Write RED RAM for Regular Pattern $\mathrm{A}[7: 0]=00 \mathrm{~h}$ [POR] Auto Write RED RAM for Regular Pattern A[7:0] = 00h [POR] $\mathrm{A}[7]$: The 1st step value, $\mathrm{POR}=0$ A[6:4]: Step Height, POR= 000 Step of alter RAM in Y-direction according to Gate			
0	1		A7	A6	A5	A4	A3	A2	A1	A0					
												A[6:4]	Height	A[6: 4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Step Width, POR $=000$ A[2:0]: Step Width, POR=000			
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	160
												010	32	110	NA
												011	64	111	NA
												BUSY pad will output high during operation.			
0	0	47	0	1	0	0	0	1	1	1	Auto Write B/W RAM for Regular Pattern	Auto Write B/W RAM for Regular Pattern A[7:0] = 00h [POR] A[7]: The 1st step value, $\mathrm{POR}=0$ A[6:4]: Step Hieght, $\mathrm{POR}=000$ Step of alter RAM in Y-direction according to Gate			
0	1		A7	A6	A5	A4	A3	A2	A1	A0					
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	256
												010	32	110	296
												011	64	111	NA
												A[2:0]: Step Width, POR $=000$ A[2:0]: Step Width, POR=000			
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	160
												010	32	110	NA
												011	64	111	NA
												During operation, BUSY pad will output high.			

R/ W\#	D/ C\#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X	Make initial settings for the RAM X
0	1		0	0	A5	A4	A3	A2	A1	A0	address X address	address in the address counter (AC) address in the address counter (AC)
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address counter	Make initial settings for the RAM Y address in the address counter (AC) A[8:0]: 000h [POR].
0	1		A7	A6	A5	A4	A3	A2	A1	A0		
0	1		0	0	0	0	0	0	0	A8		
0	0	74	0	1	1	1	0	1	0	0	Set Analog	A[7:0]: 54h [POR]
0	1		A7	A6	A5	A4	$\begin{gathered} \hline \text { A3 } \\ \text { A } \end{gathered}$	A2	A1	A0	Block Control	
0	0	7E	0	1	1	1	1	1	1	0	Set Digital	A[7:0]: 3Bh [POR]
0	1		A7	A6	A5	A4	$\begin{gathered} \hline \text { A3 } \\ \text { A } \end{gathered}$	A2	A1	A0	Block Control	
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.

6. Optical characteristics

6.1 Specifications

Measurements are made with that the illumination is under an angle of 45 degrees, the detection is perpendicular unless otherwise specified.

SYMBOL	PARAMETER	CONDI TI ONS	MI N	TYPE	MAX	UNIT	Note
R	Reflectance	White	30	35	-	$\%$	Note $6-1$
Gn	2 Grey Level	-	-	DS $+($ WS-DS $) \times n(m-1)$	-	L^{*}	-
CR	Contrast Ratio	indoor	-	10	-	-	-
Panel's life	-	$0^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$		5years	-	-	Note $6-2$

M: 2
WS : White state, DS : Dark state
Note 16-1 : Luminance meter : Eye - One Pro Spectrophotometer ;
Note 16-2: We guarantee display quality from $0^{\circ} \mathrm{C} \sim 30^{\circ} \mathrm{C}$ generally, If operation ambient temperature from $0 \sim 50^{\circ} \mathrm{C}$, w ill Offer special waveform by Waveshare

We don't guarantee 5 years pixels display quality for humidity below 45\%RH or above 70\%RH;

Suggest Updated once a day;

6.2 Definition of contrast ratio

The contrast ratio (CR) is the ratio between the reflectance in a full white area (R 1) and the reflectance in a dark area (Rd)() :

R1: white reflectance Rd: dark reflectance
$C R=R 1 / R d$

6.3 Reflection Ratio

The reflection ratio is expressed as :
$R=$ Reflectance Factor white board $\quad x\left(L_{\text {center }} / L_{\text {white board }}\right)$
L center is the luminance measured at center in a white area ($R=G=B=1$). L white board is the luminance of a standard white board. Both are measured with equivalent illumination source . The viewing angle shall be no more than 2 degrees .

7. Point and line standard

Shipment Inspection Standard

Equipment: Electrical test fixture, Point gauge						
Outline dimension	$\begin{aligned} & 29.2(\mathrm{H}) \times 59.2(\mathrm{~V}) \\ & \times 1.05(\mathrm{D}) \end{aligned}$	Unit: mm	Part-A	Active area	Part-B	Border area
Environment	Temperature	Humidity	Illuminance	Distance	Time	Angle
	$19^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C}$	$55 \% \pm 5 \%$ RH	800~1300Lux	300 mm	35 Sec	
Defet type	Inspection method	Standard		Part-A		Part-B
Spot	Electric Display	$\mathrm{D} \leq 0.25 \mathrm{~mm}$		I gnore		I gnore
		$0.25 \mathrm{~mm}<\mathrm{D} \leq 0.4 \mathrm{~mm}$		$\mathrm{N} \leq 4$		Ignore
		$\mathrm{D}>0.4 \mathrm{~mm}$		Not Allow		I gnore
Display unwork	Electric Display	Not Allow		Not Allow		I gnore
Display error	Electric Display	Not Allow		Not Allow		I gnore
Scratch or line defect(include dirt)	Visual/Film card	$\mathrm{L} \leq 2 \mathrm{~mm}, \mathrm{~W} \leq 0.2 \mathrm{~mm}$		I gnore		I gnore
		$2.0 \mathrm{~mm}<\mathrm{L} \leq 5.0 \mathrm{~mm}, \quad 0.2<$ $\mathrm{W} \leq 0.3 \mathrm{~mm}$,		$\mathrm{N} \leq 2$		I gnore
		$\mathrm{L}>5 \mathrm{~mm}, \mathrm{~W}>0.3 \mathrm{~mm}$		Not Allow		I gnore
PS Bubble	Visual/Film card	$\mathrm{D} \leq 0.2 \mathrm{~mm}$		Ignore		I gnore
		$0.2 \mathrm{~mm} \leq \mathrm{D} \leq 0.35 \mathrm{~mm}$ \& $\mathrm{N} \leq 4$		$\mathrm{N} \leq 4$		I gnore
		$\mathrm{D}>0.35 \mathrm{~mm}$		Not Allow		Ignore
Corner / Edge chipping	Visual/Film card	$\mathrm{X} \leq 6 \mathrm{~mm}, \mathrm{Y} \leq 0.4 \mathrm{~mm}$, Do not affect the electrode circuit (Edge chipping) $X \leq 1 \mathrm{~mm}, Y \leq 1 \mathrm{~mm}$, Do not affect the electrode circuit((Corner chipping) I Inore				
Remark	1. Cannot be defect \& failure cause by appearance defect;					
	2. Cannot be larger size cause by appearance defect;					
	L=long	W=wide D=point size $\mathrm{N}=$ Defects NO				

L=long $\quad \mathrm{W}=$ wide $\mathrm{D}=$ pointsize

8. Packing

9. Precautions

(1) Do not apply pressure to the EPD panel in order to prevent damaging it.
(2) Do not connect or disconnect the interface connector while the EPD panel is in operation.
(3) Do not touch IC bonding area. It may scratch TFT lead or damage IC function.
(4) Please be mindful of moisture to avoid its penetration into the EPD panel, which may cause damage during operation.
(5) If the EPD Panel / Module is not refreshed every 24 hours, a phenomena known as "Ghosting" or "Image Sticking" may occur. It is recommended to refreshed the ESL / EPD Tag every 24 hours in use case. It is recommended that customer ships or stores the ESL / EPD Tag with a completely white image to avoid this issue
(6) High temperature, high humidity, sunlight or fluorescent light may degrade the EPD panel's performance. Please do not expose the unprotected EPD panel to high temperature, high humidity, sunlight, or fluorescent for long periods of time.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Electronic Paper Displays - ePaper category:
Click to view products by Waveshare manufacturer:
Other Similar products are found below :
PIM534 E2741JS0B2 17779 DEE 172072A-W $13187 \underline{13353} 14410 \underline{14597} \underline{19406} \underline{19408} \underline{14986} \underline{13186} \underline{18401} \underline{15084} \underline{16565} \underline{18057} \underline{E} \underline{E A}$ EPA20-A DEE 600800A-W DFR0369 $10628 \underline{12561} 12563 \underline{12672} \underline{12915} 12955 \underline{12956} 3625 \underline{4086} 409841954196419742434262$ $\underline{4777} \underline{4778} 4814 \underline{000026} \underline{000041} \underline{\text { DEE 400300A2-W DFR0835 DFR0837 DEE 800480A-W EA ELABEL20-A EA EPA43-A EA EPA60-A }}$ 28084 E2154CS0C1 E2154JS0C1 E2260CS021

