注意: 有些用户由于在一开始在连接树莓派使用的时候没有设置分辨率, 重新设置分辨率并 重启后出现闪屏和残影现象。 这种情况下将屏幕断电放置几个小时后重新上电即可。 (注意 在连屏幕使用前要先设置好分辨率) 如果你让屏幕长时间工作在异常状态的话, 是会烧坏屏 幕的, 所以使用前, 请确定已经按照要求正常设置 config.txt 文件

产品概述

本产品是专为树莓派打造、却也不限于树莓派的 7 寸 HDMI 显示屏, 1024x600 超清分辨率, 带电容触摸屏。本产品同时也是通用 HDMI 显示屏, 用户可以把它用到其他 mini PC 上(需要驱动支持), 甚至将其作为计算机显示器。

产品特点

- 1024×600 超清分辨率
- 电容式触摸控制
- 支持 Raspberry Pi
- 支持 Banana Pi、Banana Pro,提供 Lubuntu, Raspbian 相应镜像
- 支持 BB Black, 提供 Angstrom 相应镜像
- 通用 HDMI 显示屏,可作为计算机显示器
- HDMI 接口用于显示, USB 接口用于触摸
- 支持背光控制,更省电

如何使用

1. 用于电脑的 Windows 系统。本 LCD 可工作于 PC 版 Windows 7 / 8 / 8.1 / 10 系统。

使用方法:

1) 打开 LCD 背部的 backlight 开关。

2) 将 LCD 的 Touch 接口连接到 PC 机的 USB 接口。稍等片刻, Windows 会自动识别触摸功能。

3) 将 LCD 的 HDMI 接口连接到 PC 机的 HDMI 接口。

注意事项: 当电脑同时连接多个显示器的时候, 只能通过本 LCD 控制主显示器上的光标, 因此建议把 LCD 设置为主显示器。

2. 用于树莓派的 Raspbian / Ubuntu mate 系统。当 LCD 工作于树莓派的 Raspbian /

Ubuntu mate 系统时,必须手动设置分辨率,否则会显示黑白相间的条纹。当 LCD 工作

于 PC 版的 Windows 系统时,无此问题。

- 1) 将 Raspbian 镜像写入到 TF 卡中。
- 2) 编辑 TF 卡根目录下的 config. txt 文件。在 config. txt 文件末尾添加:
- 1. max_usb_current=1
- 2. hdmi_group=2
- 3. hdmi_mode=87
- 4. hdmi_cvt 1024 600 60 6 0 0 0
- 5. hdmi_drive=1

注意:为了防止错误,最好直接复制粘贴。这里是 hdmi_drive=1。有些用户会错写成

hdmi_driver=1 导致屏幕无法正常显示,长时间错误设置甚至有可能烧掉屏幕。

必须确保等号两边没有空格。

- 3) 保存并将 TF 卡插入树莓派。
- 4) 打开 LCD 背部的 backlight 开关。
- 5) 将 LCD 的 Touch 接口连接到树莓派的 USB 接口。
- 6) 将 LCD 的 HDMI 接口连接到树莓派的 HDMI 接口。

(如果可以正常触摸,说明是 Rev2.1 的固件。如果是 Rev1.1 固件,请参见# 关于版本) 注意事项:随附光盘中的系统不适用于树莓派3代。如果使用树莓派3代的话,请在 raspberrypi.org 下载最新的 Raspbian 镜像,再按照上文进行设置即可。Ubuntu mate 系统修改方法相同,在 config 文件添加相同的语句。

旋转

显示旋转

在 config.txt 文件中加入语句 (config 文件位于 TF 卡根目录,即/boot 中):

1. display_rotate=1 #1: 90; 2: 180; 3: 270

保存后重启树莓派即可

1. sudo reboot

触摸旋转

在进行显示旋转后,由于触摸并没有随着显示角度做出更改,导致触摸位置不对。所以需要 对触摸做出修改。

1. 安装 libinput

1. sudo apt-get install xserver-xorg-input-libinput

2. 在/etc/X11/下创建 xorg.conf.d 目录 (如果该目录已存在,这直接进行第3步)

1. sudo mkdir /etc/X11/xorg.conf.d

3. 复制 40-libinput-conf 文件到刚刚创建的目录下

- 1. sudo cp /usr/share/X11/xorg.conf.d/40-libinput.conf /etc/X11/xorg.conf.d
 /
- 4. 编辑该文件。 找到 touchscreen 的部分。在里面添加以下语句, 然后保存即可

1. Option "CalibrationMatrix" "0 1 0 -1 0 1 0 0 1"

例如:

5. 重启树莓派

1. sudo reboot

完成以上步骤即可进行 90 度旋转。

注:

- 90 度旋转: Option "CalibrationMatrix" "010-101001"
- 180 度旋转: Option "CalibrationMatrix" "-1010-11001"
- 270 度旋转: Option "CalibrationMatrix" "0-11100001"

关于版本

Rev2.2 版本

- Rev2.2 版本硬件部分在 Rev2.1 的基础上做了一点小改动。完全兼容 Rev2.1 版本,
 用户可以放心更换。
- 增加可调电阻。

注意:使用方法和功能 Rev2.2 与 Rev2.1 一致,使用参考 Rev2.1 固件手册

Rev2.1版本 (升级版):

- 升级为 IPS 屏,更大的可视角度,更清晰的显示效果,相信你会喜欢
- 使用标准 HID 协议,方便你移植到自己的系统
- 配合 Raspberry Pi 使用时,支持 Raspbian、Ubuntu、Windows 10 IoT,单点触控,免驱
- 作为计算机显示器使用时, 支持 Windows 10 / 8.1 / 8 / 7, 五点触控, 免驱

7inch HDMI LCD (C) 用户手册-基于 Rev2.1 版本固件

板载资源

- 1. 背光开关:用于开启/关闭背光。
- 2. USB 触摸接口: USB 触摸/电源接口。
- 3. HDMI 接口:用于连接主板和 LCD 显示屏。

连接树莓派使用

烧写 Raspbian 镜像

屏幕连接树莓派使用的时候,用户需要对官方的系统进行配置。您也可以直接烧写已经配置 好的系统镜像。本节示例如何烧写镜像。

- 7inch HDMI LCD (C) Raspberry Raspbian 启动镜像
 - 将压缩文件下载到电脑上,并解压得到.img 文件(一般的解压缩工具,如好压、 WinRAR等都可以进行 7z 解压)。
 - 2. TF 卡连接到电脑,使用 SDFormatter.exe 软件格式化 TF 卡。注意:TF 卡的容量 不得低于 4GB。此操作必须搭配 TF 卡读卡器,用户需要另外购买。
 - 3. 打开 Win32DiskImager.exe 软件,选择第一步准备的系统镜像,点击 write 烧写系统镜像。

硬件连接

- 1. 用 HDMI 线连接 LCD 和树莓派的 HDMI 接口。
- 2. 用 type A 转 micro 的 USB 线连接 LCD 的 Touch 接口和树莓派任意一个的 USB 接口。

LCD 可以正常显示之后,调用树莓派系统自带的虚拟键盘,可以节省宝贵的 USB 资源。便于用户操作树莓派。执行: DISPLAY=:0.0 matchbox-keyboard -s 100 extended 即可进入虚拟键盘,如下图所示:

在官方的 Raspbian 镜像上直接修改 config.txt 文件

在树莓派网站下载 RASPBIAN 镜像,并在 config.txt 文件的最后加上以下代码即可

- 1. max_usb_current=1
- 2. hdmi_group=2
- 3. hdmi_mode=87
- 4. hdmi_cvt 1024 600 60 6 0 0 0
- 5. hdmi_drive=1

在树莓派 Ubuntu 系统中使用

在树莓派网站下载 UBUNTU MATE 镜像,并在 config.txt 文件的最后加上以下代码即可

- 1. max_usb_current=1
- 2. hdmi_group=2
- 3. hdmi_mode=87
- 4. hdmi_cvt 1024 600 60 6 0 0 0
- 5. hdmi_drive=1

在树莓派的 Windows 10 IoT Core 系统中使用

在微软网站下载 Windows 10 IoT Core,按微软教程制作 Windows 10 IoT Core 镜像,

并将镜像烧写到 TF 卡。在 TF 卡根目录找到 config.txt 文件,在其最后加上以下代码即可

- 1. max_usb_current=1
- 2. hdmi_group=2
- 3. hdmi_mode=87
- 4. hdmi_cvt 1024 600 60 6 0 0 0
- 5. hdmi_drive=1

连接 BeagleBone 使用

烧写 Angstrom 镜像

如果只用做显示而不需要触摸功能,可以直接烧写最新的 Angstrom 镜像,不需要做任何 设置。BeagleBone 会自动读取 7 寸 HDMI 显示器的显示参数,自动调整为 1024*600 的 分辨率。 当作触摸显示器使用的时候,用户需要烧写 7inch HDMI LCD (C) BB Black Angstrom 启动镜像。烧写镜像的方法:

- 将压缩文件下载到电脑上,并解压得到.img 文件(一般的解压缩工具,如好压、 WinRAR等都可以进行 7z 解压)。
- 2. TF 卡连接到电脑,使用 SDFormatter.exe 软件格式化 TF 卡。注意:TF 卡的容量 不得低于 4GB。此操作必须搭配 TF 卡读卡器,用户需要另外购买。
- 3. 打开 Win32DiskImager.exe 软件,选择第一步准备的系统镜像,点击 write 烧写系统镜像。
- 镜像写入到 TF 卡之后,即可把 TF 卡插上 BeagleBone。给 BeagleBone 上电,此
 时会进入 TF 卡中的系统。等待一会,即可进入图形界面。

硬件连接

- 用 HDMI 转 micro HDMI 转接线(用户需要另外购买)连接 LCD 和 BeagleBone 的 HDMI 接口。
- 用 type A 转 micro 的 USB 线连接 LCD 的 Touch 接口和 BeagleBone 的主机 USB 接口。(BeagleBone 提供了一个主机 USB 接口和一个从机 USB 接口,把 LCD 接入主机 USB 接口方可正常使用)

连接香蕉派使用

因为香蕉派启动的时候会读取显示器分辨率的参数,所以香蕉派上电之前需要和显示器接 好,进到进桌面了,拔掉显示器再接上也能正常使用。 烧写 7inch HDMI LCD (C) Banana Pi Raspbian 启动镜像, 该镜像文件支持 BananaPi Pro和 BananaPi。

- 将压缩文件下载到电脑上,并解压得到.img 文件(一般的解压缩工具,如好压、 WinRAR 等都可以进行 7z 解压)。
- 2. TF 卡连接到电脑,使用 SDFormatter.exe 软件格式化 TF 卡。注意:TF 卡的容量 不得低于 4GB。此操作必须搭配 TF 卡读卡器,用户需要另外购买。
- 3. 打开 Win32DiskImager.exe 软件,选择第一步准备的系统镜像,点击 write 烧写系统镜像。

硬件连接

- 1. 用 HDMI 线连接 LCD 和香蕉派的 HDMI 接口。
- 2. 用 type A 转 micro 的 USB 线连接 LCD 的 Touch 接口和香蕉派的任意一个 USB 接口。

加载 BananaPi Pro 的 WiFi 驱动

BananaPi Pro 和 Banana Pi 主要差别在于 BananaPi Pro 板载了一个 WiFi 模块,用户使用 BananaPi Pro 的时候,可以 SSH 连接 BananaPi Pro,执行下面的指令加载 WiFi 驱动:

1. sudo modprobe ap6210

在香蕉派的 Lubuntu 系统中使用

烧写 7inch HDMI LCD (C) Banana Pi Lubuntu 启动镜像,该镜像文件支持 BananaPi Pro

和 BananaPi。

用户名: bananapi, 密码: bananapi

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Display Development Tools category:

Click to view products by Waveshare manufacturer:

Other Similar products are found below :

 TW8819-NA2-CR-EVAL
 LCD-16396
 KIT-19297
 EA 9781-2USB
 5inch HDMI LCD (G)
 7inch HDMI LCD (C)
 7inch HDMI LCD (D)

 1.28inch LCD Module
 4inch HDMI LCD
 5inch HDMI LCD (H)
 4.3inch-DSI-LCD
 LPU4CG031B
 5inch HDMI LCD
 1109
 MCIMX-LVDS1

 MIKROE-2449
 MIKROE-2453
 BREAK OUT BOARD 20
 BREAK OUT BOARD 36
 131
 1431
 LCD8000-43T
 DEV-13628
 1590

 MIKROE-2269
 1673
 1770
 1947
 1983
 1987
 KIT 60110-3
 KIT 67110-3
 4172700XX-3
 2050
 2218
 2219
 STEVAL

 CCM004V2
 2260
 2345
 2454
 2455
 2478
 2674
 SK-220RD-PI
 1811
 627
 SK-GEN4-50DCT-CLB-SB-AR
 3128