

RPi Relay Board 用户手册

产品简介

RPi Relay Board 是适用于 Raspberry Pi A+/B+/2 代 B/3 代 B 的树莓派继电器扩展板。

主要用途:

树莓派 IO 输出的弱电流通过本产品可 以控制强电流的通断,常用于智能家居 等强电领域。结合树莓派的网络功能, 可以实现对家电的远程控制。

【注意】树莓派具有 40Pin 和 26Pin 两 种接口,该产品只兼容 40Pin 的树莓派。

主要特性:

- 适用于树莓派 A+/B+/2B/3B
- 采用高质量的继电器
- 继电器允许接入高达 5A 250V AC 或 5A 30V DC
- 带光耦隔离,避免高电压电路干扰
- 带继电器指示灯,方便查看继电器的工作状态
- 带继电器选择跳线,方便选择树莓派其他引脚控制继电器
- 提供完善的配套资料手册(包括 wiringPi、WebioPi、shell、python 和 bcm2835 等例程)

资源简介

[接口简介]

- **RPi 连接**口 方便接入树莓派
- 继电器接线端子
 方便接外部被控制线

[跳线说明]

继电器控制管脚选择跳线
 短接跳线:接入到示例程序指定的 I/O

断开跳线:可改为使用连接线接入自定义的 I/O

[器件简介]

- 3. 继电器
- 4. 光耦
 - PC817 光耦芯片
- 继电器工作指示灯
 LED 亮,继电器常闭端断开,常开端闭合
 LED 灭,继电器常闭端闭合,常开端断开
- 6. 电源指示灯

接口说明

● 继电器通道和 Pi 引脚的对应关系:

通道标号	RPi 引脚号	wiringPi	BCM	描述
CH1	37	P25	26	通道1
CH2	38	P28	20	通道 2
СНЗ	40	P29	21	通道 3

【注意】PCB上的丝印标示对应 wiringPi 编码。

● Relay_JMP(6P 跳线)用途:

Relay_JMP 是继电器控制管脚选择跳线。当连接跳线帽时,即可使用树莓派控制继电器。

● 接线端子说明:

本扩展板带有三个接线端子,每个接线端子上分别有三个脚,用来连接外部电路。

三个端子都是低电平使能。当树莓派 IO 口输出低电平时,则对应通道的 LED 灯点亮。同时 继电器常开触点闭合,常闭触点断开,使得外部电路通断状态发生改变。

(PS:不要忘记连接 Relay_JMP 跳线帽哦!)

继电器动作前:

继电器动作后:

软件例程

该模块的例程包括 Shell、bcm2835、WiringPi、python 和 Webiopi 例程。

开发环境

在使用本扩展板之前,我们需要给树莓派安装 bcm2835, wiringPi 和 python 函数库,树莓 派的库函数安装和配置过程请参见<u>为树莓派安装必要的函数库</u>。

安装好函数库之后,还需要下载产品的示例程序。把示例程序复制并释放到系统中,例如执行 tar -zxvf RPi_Relay_Board.tar.gz ~,释放到/home/pi 目录下。部分示例程序拥有 不同的实现方式(例如 bcm2835, wiringPi, python,Shell, Webiopi 等方式),即使实现同一个 功能,也可能依赖不同的函数库。因此使用之前请务必安装好 bcm2835, wiringPi, python 和 Webiopi 函数库。

如果安装完函数库之后依然无法执行以下的示例程序,那么您可以尝试使用 chmod +x filename 命令给程序赋予可执行权限。

实验操作和现象

1) Shell 程序

进入 Linux 终端,在终端执行以下命令。

执行程序:

```
pi@raspberrypi ~/RPi_Relay_Board/shell $ sudo ./Relay.sh CH1 ON
```

预期结果:继电器通道1的LED被点亮,同时听到继电器接合的声音。命令中后面两个参数可改变,例如运行如下命令分别为继电器2接合,继电器3断开。 pi@raspberrypi ~/RPi_Relay_Board/shell \$ sudo ./Relay.sh CH2 ON pi@raspberrypi ~/RPi Relay Board/shell \$ sudo ./Relay.sh CH3 OFF

2) Bcm2835 程序

编译程序:

pi@raspberrypi ~/RPi_Relay_Board/bcm2835 \$ make

终端执行:

pi@raspberrypi ~/RPi_Relay_Board/bcm2835 \$ sudo ./Relay_Module

预期结果:可以看到 3 个 LED 依次点亮,继电器依次在常开触点和常闭触点之间来回切换。 同时终端会显示目前继电器在哪个触点。

按键盘 Ctrl+C 结束实验。

3) wiringPi 程序

编译程序:

pi@raspberrypi ~/RPi_Relay_Board/wiringPi \$ make

终端执行:

pi@raspberrypi ~/RPi Relay Board/wiringPi \$ sudo ./Relay Module

预期结果:可以看到 3 个 LED 依次点亮,继电器依次在常开触点和常闭触点之间来回切换。 同时终端会显示目前继电器在哪个触点。

按键盘 Ctrl + C 结束实验。

4) python 程序

终端执行:

pi@raspberrypi ~/RPi_Relay_Board/python \$ sudo python Relay_Module.py

预期结果:可以看到 3 个 LED 依次被点亮,继电器依次在常开触点和常闭触点之间来回切换。同时终端会显示目前继电器在哪个触点。

按键盘 Ctrl + C 结束实验。

5) Webiopi 程序

本例程的网页控制是基于 WebioPi 的软件框架来控制继电器的。

● 环境安装:

进入 Webiopi 目录下解压库文件并安装

```
pi@raspberrypi ~/RPi_Relay_Board/Webiopi $ tar -zxvf WebIOPi-0.7.1-raspi2.tar.gz
pi@raspberrypi ~/RPi_Relay_Board/Webiopi $ cd WebIOPi-0.7.1-raspi2
pi@raspberrypi ~/RPi_Relay_Board/WebioPi/WebIOPi-0.7.1-raspi2 $ sudo ./setup.sh
```

运行 webiopi -h 如果出现以下界面,则库安装成功。

₽ pi@raspberrypi: ~		
pi@raspberrypi ~ \$ webi WebIOPi command-line us webiopi [-h] [-c config	iopi -h sage g] [-l log] [-s script] [-d] [port]	
Options: -h,help -c,config file -l,log file -s,script file -d,debug	Display this help Load config from file Log to file Load script from file Enable DEBUG	
Arguments: port pi@raspberrypi ~ \$ []	Port to bind the HTTP Server	

终端执行:

pi@raspberrypi ~ \$ sudo webiopi -d -c /etc/webiopi/config

然后在电脑端或者手机端打开网页浏览器,在地址栏内输入树莓派 ip 地址,端口号 8000。 例如: http://192.168.1.16:8000(根据实际情况填入)。在登录网站时,需要输入账号和密码, 默认的账号和密码分别是: webiopi 和 raspberry。如果进入 WeblOPi Main Menu 页面,说明环境 配置成功了:

WebIOPi Main Menu

GPIO Header

Control and Debug the Raspberry Pi GPIO with a display which looks like the physical header.

GPIO List

Control and Debug the Raspberry Pi GPIO ordered in a single column.

Serial Monitor

Use the browser to play with Serial interfaces configured in WebIOPi.

Devices Monitor

Control and Debug devices and circuits wired to your Pi and configured in WebIOPi.

● 实验操作和现象:

回到终端。按下 **Ctrl+C**结束上面的进程。然后执行: cd ~/RPi_Relay_Board/Webiopi pi@raspberrypi ~/RPi_Relay_Board/Webiopi \$ sudo webiopi -d -c config

打开网页浏览器,在地址栏内重新输入树莓派 ip 地址,端口号 8000,或者刷新网页:

← → C 🗋 1	92.168.1.16:8000	ි ≡
🤯 Waveshare Wiki	🐝 Waveshare Wiki	
	Relay_CH1	
	Relay_CH2	
	Relay_CH3	

如果没有出现这个页面,建议使用 Chrome 或者 Firefox 浏览器。此外还要确保树莓派的当前目录为~/RPi_Relay_Board/Webiopi,这个目录下有一个 index.html 文件,然后再执行 sudo webiopi -d -c config。这样客户端的浏览器才能进入 index.html,否则会进入 WebIOPi Main Menu 页面。

点击网页上的不同继电器通道的控件可以控制继电器。

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Single Board Computers category:

Click to view products by Waveshare manufacturer:

Other Similar products are found below :

MANO882VPGGA-H81 SSD3200W-S-SLC-INN AmITX-SL-G-Q170 IB100 MVME61006E-2173R 20-101-0738 PCE-4128G2-00A1E RSB-4220CS-MCA1E SHB230DGGA-RC IB909AF-5650 AmITX-BT-I-E3815 PICO841VGA-E3827 IMB210VGGA MI981AF RSB-4221CS-MCA1E PCE-9228G2I-00A1E IB915F-3955 IB909F-5010 MI958F-16C UPS-P-8G-64GB-PACK S2600WFT IB915AF-6300 S2600STB BBS2600BPS IB915F-6100 Nit6QP_MAX MI990VF-X28-E MI990VF-6820 MI991AF-C236 94AC6636 BANANA PI BPI-M4 BLKNUC7I3DNHNC1978015 BLKNUC7I5DNK1E 960791 IOT-LS1012A-OXALIS NITX-300-ET-DVI 94AC6633 A33-OLINUXINO-N8G A64-OLINUXINO-1GE16GW A20-SOM-E16GS16M A20-SOM204-1G-M EMB-APL1-A10-3350-F1-LV PICO-APL1-A10-F001 PICO-APL4-A10-F003 ODYSSEY - STM32MP157C BOARD WITH SOM BEAGLEBONE GREEN GATEWAY DEV BOARD ODYSSEY - X86J4105864 8GB RAM 64GB EMMC ODYSSEY -X86J4105864 8GB/64GB ENTERPRISE VISIONDK-STM32MP1 V.1.0 VISIONDK-6ULL V.2.0 VISIONDK-8MMINI V.1.0