WAS4729QB

Low On Resistance (0.8) Dual SPDT Analog Switch with Negative Swing Audio Capability

Descriptions

The WAS4729QB is a high performance, dual Single Pole Double Throw (SPDT) analog switch with negative swing audio capability that features ultra-low Ron of 0.8Ω (typical) at 3.6 V VCC. The WAS4729QB operates over a wide VCC range of 2.3 V to 5.5 V and is designed for break-before-make operation. The select input is TTL-level compatible.

WAS4729QB is also featured with smart circuitry to minimize VCC leakage current even when the control voltage is lower than VCC supply voltage. This feature suits mobile handset applications by allowing direct interface with baseband processor general-purpose IO with minimal battery consumption. In other word, there is no need of additional device to shift control level to be the same as that of VCC in real application.

The WAS4729QB is available in QFN1418-10L package. Standard product is Pb-Free and halogen-Free.

Features

- Supply voltage $: 2.3 \sim 5.5 \mathrm{~V}$
- ultra-low On Resistance
:0.8 @ @ 3.6V
- High Off isolation :-81dB @ 1KHz
- Crosstalk Rejection :-83dB @ 1KHz
- -3dB Bandwidth : 80MHz
- Rail-to-Rail Signal Range
- Break-Before-Make Switching
- HBM JEDEC: JESD22-A114
- IO to GND : $\pm 8 \mathrm{KV}$
- Power to GND : $\pm 5 \mathrm{KV}$

Applications

- Cell phones, PDA, Digital Camera and Notebook
- LCD Monitor, TV and Set-Top Box
- Audio and Video Signal Routing

Http//:www.sh-willsemi.com

QFN1418-10L

QB*
-

WAS4729QB

QB = Device code

* $=$ Month (A~Z)

Marking

Order information

Device	Package	Shipping
WAS4729QB-10/TR	QFN1418-10L	3000/Reel\&Tape

Pin configuration (Top view)

Pin descriptions

Pin Number	Symbol	Descriptions
2,10	NO_{x}	Data Port(Normally open)
6	GND	Ground
5,7	NC_{x}	Data Port(Normally closed)
3,9	$\mathrm{COM}_{\mathrm{x}}$	Common Data Port
1	VCC	Positive Power Supply
4,8	IN_{x}	Logic Control

Function descriptions

Logic Input $\left(\mathrm{IN}_{\mathrm{x}}\right)$	Function
0	NC_{x} Connected to $\mathrm{COM}_{\mathrm{x}}$
1	NO_{x} Connected to $\mathrm{COM}_{\mathrm{x}}$

Note: $x=1$ or 2

Functional Block Diagram

Application Block Diagram

Note: WAS4729 switches feature negative signal capability that allows signals below ground to pass through without distortion. These analog switches operate from a signal +2.3 V to 5.5 V supply. The input/output signal swing of device is dependent of the supply voltage $\mathrm{V}+$: the device pass signals as high as $\mathrm{V}+$ and as low as $\mathrm{V}+-6.5$, including signals below ground with minimal distortion. Table 1 shows the input/output signal swing the user can get with different supply voltages.

SUPPLY VOLTAGE, \mathbf{V}_{+}	Min. $\left(\mathrm{V}_{\mathrm{Nc}}, \mathrm{V}_{\mathrm{NO}}, \mathrm{V}_{\mathrm{COM}}\right)=\mathrm{V}_{+}-\mathbf{6 . 5} \mathrm{V}$	$\begin{gathered} \text { Max. } \\ \left(\mathrm{V}_{\mathrm{Nc}}, \mathrm{~V}_{\mathrm{NO}}, \mathrm{~V}_{\mathrm{COM}}\right)=\mathrm{V}_{+} \end{gathered}$
5.5V	-1.0 V	5.5 V
5.0 V	-1.5 V	5.0 V
4.5 V	-2.0 V	4.5 V
4.0 V	-2.5 V	4.0 V
3.5 V	-3.0 V	3.5 V
3.0 V	-3.5 V	3.0 V
2.5 V	-4.0 V	2.5 V

Absolute Maximum Ratings ${ }^{(1)}$

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	$-0.3 \sim 6.5$	V
Control Input Voltage	$\mathrm{VIN}_{\mathrm{X}}$	$-0.3 \sim 5.5$	V
Continuous Current NO_NC_COM_		± 300	mA
Peak Current NO_NC_COM_(pulsed at 1ms 50\% duty cycle)		± 400	mA
Peak Current NO_NC_COM_(pulsed at 1ms 10\% duty cycle)		± 500	mA
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$
Junction Temperature under Bias	T_{J}	150	${ }^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	T_{L}	260	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	250	mW

Recommend operating ratings ${ }^{(3)}$

Parameter	Symbol	Value	Unit
Supply Voltage Operating	V_{CC}	$2.3 \sim 5.5$	V
Control Input Voltage	V_{IN}	$0.0 \sim \mathrm{~V}_{\mathrm{CC}}$	V
Input Signal Voltage	V_{IS}	$0.0 \sim 5.5$	V
Operating Temperature	T_{A}	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Input Raise and Fall Time(Control Input $\mathrm{V}_{\mathrm{CC}}=2.3 \sim 3.6 \mathrm{~V}$)	$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	$0 \sim 10$	$\mathrm{~ns} / \mathrm{V}$
Thermal Resistance	$\mathrm{R}_{\text {өJA }}$	350	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note:

1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
3. Control input must be held high or Low, it must not float.

DC Electronics Characteristics ($\mathrm{Ta}=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{vCC}=3.6 \mathrm{~V}$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Input logic high level	V_{1}	VCC: $3.0 \sim 4.5$	1.6			V
		VCC: $2.3 \sim 3.0$	1.4			V
Input logic low level	VIL	VCC: $3.0 \sim 4.5$			0.6	V
		VCC: 2.3 ~ 3.0			0.4	V
Supply quiescent current	Icc	lout $=0, \mathrm{~V}_{\text {IN }}=0$ or $\mathrm{V}_{\text {IN }}=\mathrm{VCC}$			1.0	uA
Increase in Icc per input	Ісст	$\begin{aligned} & \text { lout }=0, \text { VCC }=4.5 \\ & V_{\text {IN }}>1.8 \text { or } V_{\text {IN }}<0.5 \end{aligned}$			2.0	uA
Input leakage current	1 N	$\mathrm{V}_{\text {SEL }}=\mathrm{VCC}$			± 1.0	uA
Off state switch leakage current	loff				± 1.0	uA
On state switch leakage current	Ion				± 1.0	uA
On-Resistance	Ron	$\mathrm{V}_{\text {IS }}=0 \sim \mathrm{VCC}, \mathrm{l}_{\text {lout }}=100 \mathrm{~mA}$,		0.8	1.0	Ω
On-Resistance Matching Between Channels	Δ Ron	$\mathrm{V}_{\text {IS }}=0 \sim \mathrm{VCC}, \mathrm{l}_{\text {lout }}=100 \mathrm{~mA}$,		0.08	0.1	Ω
On-Resistance Flatness	$\mathrm{R}_{\text {flat(on) }}$	$\mathrm{V}_{\text {IS }}=-3 \sim 0 \mathrm{~V}$, lout $=100 \mathrm{~mA}$,		0.1		Ω
		$\mathrm{V}_{\text {IS }}=0 \sim 3 \mathrm{~V}$, Iout $=100 \mathrm{~mA}$,		0.12		Ω

AC Electronics Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VCC}=3.6 \mathrm{~V}$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Turn-On Time	Ton	$\begin{aligned} & \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		200		ns
Turn-Off Time	Toff	$\begin{array}{ll} \mathrm{V}_{\mathrm{IS}}=1.5 \mathrm{~V}, & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=50 \Omega \end{array}$		200		ns
Break-Before-Make time	$\mathrm{T}_{\text {BBM }}$	Generate by design		100		ns
-3dB Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$		80		MHz
Off isolation	OIRR	$\mathrm{F}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		-81		dB
		$\mathrm{F}=10 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		-80		dB
Crosstalk	Xtalk	$\mathrm{F}=1 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		-83		dB
		$\mathrm{F}=10 \mathrm{KHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		-82		dB
Total Harmonic Distortion	THD	$\begin{aligned} & F=20 H z \text { to } 20 \mathrm{KHz} \\ & V_{\text {IS }}=2 \mathrm{Vp}-\mathrm{p} @ R_{\mathrm{L}}=16 \Omega, \end{aligned}$		0.2		\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=32 \Omega, \end{aligned}$		0.1		\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=2 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=600 \Omega, \end{aligned}$		0.0054		\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=4 \mathrm{Vp}-\mathrm{p} @ R_{\mathrm{L}}=16 \Omega, \end{aligned}$		0.56		\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=4 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=32 \Omega, \end{aligned}$		0.28		\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=4 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=600 \Omega, \end{aligned}$		0.015		\%

		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{I}}=6 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=16 \Omega, \end{aligned}$	0.44	\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{I}}=6 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=32 \Omega, \end{aligned}$	0.29	\%
		$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz} \\ & \mathrm{~V}_{\mathrm{IS}}=6 \mathrm{Vp}-\mathrm{p} @ \mathrm{R}_{\mathrm{L}}=600 \Omega, \end{aligned}$	0.012	\%
Signal-to-Noise Ratio	SNR	$\mathrm{F}=20 \mathrm{~Hz}$ to 20 KHz , A-weighted filter, Inputs grounded $\mathrm{R}_{\mathrm{L}}=32 \Omega$ or 20 K	150	dBV
Stereo Channel Imbalance NC1 and NO1, NC2 and NO2	IMB	$\begin{aligned} & \mathrm{F}=20 \mathrm{~Hz} \text { to } 20 \mathrm{KHz}, \\ & \mathrm{RL}=32 \Omega \end{aligned}$	± 0.003	dB

Capacitance ($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Unit
Off capacitance	CofF	$\mathrm{F}=100 \mathrm{KHz}, \mathrm{VCC}=3.3$		50		pF
On capacitance	Con	$\mathrm{F}=100 \mathrm{KHz}, \mathrm{VCC}=3.3$		80		pF

Test Circuits

ON-Resistance (Ron)

Crosstalk (Xtalk)

Bandwidth (BW)

ON/OFF Time Waveforms (Ton / Toff)

Off isolation (OIRR)

PACKAGE OUTLINE DIMENSIONS

QFN1418-10L

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions in Millimeters		
	Min.	Typ.	Max.
A	0.50	0.55	0.60
A1	0.00	-	0.05
A3	1.35	0.15 Ref.	
D	1.75	1.40	1.45
E	0.15	1.80	1.85
b	0.30	0.20	0.25
L	0.40	0.40	0.50
L1		0.50	0.60
e		0.40 BSC	

TAPE AND REEL INFORMATION

Reel Dimensions

Tape Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	∇ 7inch 「 13 inch			
W	Overall width of the carrier tape	$\nabla 8 \mathrm{~mm}$ 「12mm			
P1	Pitch between successive cavity centers	$\ulcorner 2 \mathrm{~mm}$	V 4mm	$\ulcorner 8 \mathrm{~mm}$	
Pin1	Pin1 Quadrant	V Q1	Г Q2	Г Q3	\ulcorner Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Analogue Switch ICs category:
Click to view products by Will Semiconductor manufacturer:
Other Similar products are found below :
FSA3051TMX NLVAS4599DTT1G MAX4992EVB+T MAX4684ETB+T BCM6522IPBG BCM65300IFSBG MAX14764ETA+T TMUX1113RSVR TMUX1112RSVR ADG1436TRUZ-EP BL4684C PE423422A PE42359SCAA PE42540F RS550YUCM12 ADGS1414DBCCZ ADG658YRUZ-REEL7 RS2117YUTQK10 RS2118YUTQK10 RS2227XUTQK10 SP2526A-1EN-L/TR FSA4157P6X BA7603F-E2 MAX4702EUE+ MAX4617CUE+ MAX4599EUT+T MAX4066ESD+ MAX4052ACSE+ MAX396CAI+ MAX391CPE+ MAX4730EXT+T MAX314CPE+ MAX4051AEEE+ BU4066BCFV-E2 MAX313CPE+ BU4S66G2-TR TS3A4751PWR NCN1154MUTAG DG444DY-E3 NLAS4157DFT2G NLAS4599DFT2G NLAS7242MUTBG NLASB3157DFT2G NLAST4599DFT2G NLAST4599DTT1G DG403DY-T1-E3 MAX4714EXTT MAX392CPE BGSX22G2A10E6327XTSA1 ADG1611BRUZ-REEL7

