WD1033

1.5MHz, 2A, Step-down DC-DC Converter

Descriptions

The WD1033 is a high efficiency, synchronous step down DC-DC converter optimized for battery powered portable applications. It supports up to 2 A output current. With a wide input voltage range of 2.5 V to 5.5 V , the device supports applications powered by single Li-ion battery with extended voltage range, two and three alkaline cell, 3.3 V and 5 V input voltage range. The WD1033 operates at 1.5 MHz fixed switching frequency with Pulse-Width-Modulation (PWM) and enters Pulse-Skipping-Modulation (PSM) operation at light load current to maintain high efficiency over the entire load current range.

The switching frequency is internally set at 1.5 MHz , allowing the use of tiny surface mount inductor and input/output capacitors. Low output voltage is easily supported with the 0.6 V feedback reference voltage.

The WD1033 is available in SOT-23-5L package. Standard product is Pb -free and Halogen-free.

Features

- Input voltage range :2.5~5.5V
- Continue output current $: 2 \mathrm{~A}$
- Switching frequency $: 1.5 \mathrm{MHz}$ (Typ.)
- Efficiency : Up to 94\%
- Feedback reference voltage : 0.6V
- 100% duty cycle for low dropout operation
- Adjustable Output Voltage

Http//:www.sh-willsemi.com

Pin configuration (Top view)

Order information

Device	Package	Shipping
WD1033E-5/TR	SOT-23-5L	3000/Reel\&Tape

Typical Applications

Fig1 Schematic Diagram
Suggested Component Values

$\mathbf{V}_{\text {out }}(\mathbf{V})$	$\mathbf{R 1} \mathbf{(k \Omega)}$	$\mathbf{R 2} \mathbf{(k \Omega} \mathbf{)}$	$\mathbf{C}_{\mathbf{I N}}(\boldsymbol{\mu F})$	$\mathbf{C}_{\text {out }}(\boldsymbol{\mu F})$	$\mathbf{C} \mathbf{1}(\mathbf{p F})$	$\mathbf{L}(\boldsymbol{\mu} \mathbf{H})$
3.3	90	20	10	22	22	2.2
1.8	100	50	10	22	22	2.2
1.5	100	66.6	10	22	22	2.2
1.2	100	100	10	22	22	1.0
1.05	100	133	10	22	22	1.0
1	100	148	10	22	22	1.0
0.6	0	-	10	22	22	1.0

Pin Descriptions

Pin Name	Pin Number	Pin Description
EN	1	Enable Control. Pull high to turn on. Do not leave it floating
GND	2	Ground pin.
SW	3	Inductor pin.
VIN	4	Input pin. Decouple this pin to GND with at least 10 uF ceramic Cap.
FB	5	Feedback pin. Connected to the feedback resistor for adjustable version or VOUT for fix output version

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
VIN pin voltage range	V_{IN}	$-0.3 \sim 6.5$	V
EN, FB pin voltage range	-	$-0.3 \sim \mathrm{~V}_{\mathrm{IN}}$	V
SW pin voltage range (DC)	-	$-0.3 \sim \mathrm{~V}_{\mathrm{IN}}$	V
Power Dissipation - SOT-23-5L (Note 1)	P_{D}	0.5	W
Junction to Ambient Thermal Resistance - SOT-23-5L (Note 1)	$\mathrm{R}_{\text {өJA }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Lead temperature(Soldering, 10s)	T_{L}	260	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	Topr	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Note 1: Surface mounted on FR-4 Board using 1 square inch pad size, dual side, $10 z$ copper

Electronics Characteristics ($\mathrm{Ta}=\mathbf{2 5 ^ { \circ }} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=\mathrm{V}_{\mathrm{IN}}$, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Input Voltage Range	VIN		2.5		5.5	V
Vin Under Voltage Lockout Threshold	Vuvlo	Rising		2.4	2.5	V
		Falling		2.3		
Standby Supply Current	la	$\mathrm{V}_{\text {FB }}=105 \%$, lout $=0 \mathrm{~A}$		40		uA
Shutdown Supply Current	Ishon	$\mathrm{V}_{\text {EN }}=0 \mathrm{~V}$		0.2	1	uA
Feedback reference Voltage	$\mathrm{V}_{\text {fb }}$	$\begin{aligned} & \text { Vin=Vout(nom) }+1 \mathrm{~V} \\ & 0 \mathrm{~mA} \leqslant 10 \mathrm{~T} \leqslant 250 \mathrm{MA} \end{aligned}$	0.588	0.600	0.612	V
Line Regulation	\triangle Line	$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$ to 5.5 V		0.15		\%/V
Inductor Limit Current	ILIM	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=90 \%{ }^{*}$ Vout		3.5		A
Oscillator Frequency	fosc	$\mathrm{V}_{\text {FB }}$ or Vout in regulation		1.5		MHz
RDS(ON) of P-Channel FET	Rpfet	$\mathrm{I}_{\text {sw }}=100 \mathrm{~mA}$		0.12		Ω
Rds(on) of N-Channel FET	Rnfet	Isw $=-100 \mathrm{~mA}$		0.08		Ω
Feedback Leakage Current	Ifb				± 30	nA
EN Rising Threshold	$\mathrm{V}_{\text {ENH }}$		1.4			V
EN falling Threshold	$\mathrm{V}_{\text {ENL }}$				0.4	V
EN Leakage Current	len	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}$ or VIN			1	uA
Min On Time				75		nS
Max Duty Cycle				100		\%
Soft Start Time				700		uS
Input OVP Shutdown	Vovp	Rising		6.5		V
		Falling		6.3		V
Over Volatage Protection Blanking Time				20		uS
Over Temperature Protection	Totp			155		${ }^{\circ} \mathrm{C}$
OTP Hysteresis				30		${ }^{\circ} \mathrm{C}$

Typical Characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$, unless otherwise noted)

Output voltage vs. Load current

Output voltage vs. Load current

Output voltage vs. Temperature

Output voltage vs. Temperature

Frequency vs. Supply voltage

UVLO vs. Temperature

EN threshold vs. Temperature

Quiescent Current vs. Supply voltage

Frequency vs. Temperature

Quiescent Current vs. Temperature

Load Transient Response
$\mathrm{VIN}=5 \mathrm{~V}, \mathrm{VO}=0.6 \mathrm{~V}, \mathrm{EN}=5 \mathrm{~V}, \mathrm{IO}=1 \mathrm{~mA}-1 \mathrm{~A}$

Ripple : VIN=5.5V, VO=1.8V, EN=3.6V $\mathrm{IO}=1 \mathrm{~A}$

$\mathrm{VIN}=3.6 \mathrm{~V}, \mathrm{VO}=1.8 \mathrm{~V}, \mathrm{EN}=3.6 \mathrm{~V}$ VOUT short

Operation Informations

PWM Control Mode

The WD1033 step-down converter operates with typically 1.5 MHz fixed-frequency pulse width modulation (PWM) at moderate to heavy load currents. Both the main P-channel MOSFET and synchronous N -channel MOSFET switches are internal. During PWM operation, the converter uses a current-mode control scheme to achieve good line and load transient response. At the beginning of each clock cycle initiated by the clock signal, the main switch is turned on. The current flows from the input capacitor via the main switch through the inductor to the output capacitor and load. During this phase, the current ramps up until the PWM comparator trips and the control logic turn off the switch. After a dead time, which prevents shoot-through current, the synchronous switch is turned on and the inductor current ramps down. The current flows from the inductor and the output capacitor to the load. It returns back to the inductor through the synchronous switch.

The next cycle is initiated by the clock signal again turning off the synchronous switch and turning on the main switch.

Pulse Skipping Mode (PSM)

At light loads, the inductor current may reach zero or reverse on each pulse. The synchronous switch is turned off by the current reversal comparator, IRcmp, and the switch voltage will ring. This is discontinuous mode operation, and is normal behavior for the switching regulator. At very light loads, the WD1033 will automatically skip pulses in pulse skipping mode (PSM) operation to maintain output regulation.
goes into shutdown. In this mode, the high-side and low-side MOSFET are turned off.

Dropout Operation

The device starts to enter 100\% duty-cycle mode once the input voltage comes close to the nominal output voltage. In order to maintain the output voltage, the main switch is turned on 100% for one or more cycles. The output voltage will then be determined by the input voltage minus the voltage drop across the P-channel MOSFET and the inductor.

Shutdown Mode

Drive EN to GND to place the WD1033 in shutdown mode. In shutdown mode, the reference, control circuit, main switch, and synchronous switch turn off and the output becomes high impedance. Input current falls to $0.1 \mu \mathrm{~A}$ (Typ.) during shutdown mode.

Over Temperature Protection (OTP)

As soon as the junction temperature (TJ) exceeds $155^{\circ} \mathrm{C}$ (Typ.), the device goes into thermal shutdown. In this mode, the high-side and low-side MOSFET are turned off.

Short-Circuit Protection

When the output is shorted to ground, the device

Application Informations

External component selection for the application circuit depends on the load current requirements. Certain tradeoffs between different performance parameters can also be made.

Output Voltage Setting

The output voltage can be calculated as:

$$
\mathrm{V}_{\mathrm{OUT}}=0.6 \times\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right)
$$

The external resistive divider is connected to the output. To minimize the current through the feedback divider network, R1 should be larger than $100 \mathrm{k} \Omega$. The sum of R1 and R2 should not exceed 1 $\mathrm{M} \Omega$, to keep the network robust against noise. An external feed forward capacitor $\mathrm{C}_{\text {FwD }}$, is required for optimum load transient response. The value of CFwD should be in the range between 22 pF and $33 p F$.

Route the FB line away from noise sources, such as the inductor or the SW line.

Inductor Selection

The WD1033 high switching frequency allows the use of a physically small inductor. The inductor ripple current is determined by

$$
\Delta I_{L}=\frac{V_{O U T}}{(f)(L)}\left(1-\frac{V_{O U T}}{V_{I N}}\right)
$$

Where $\Delta \mathrm{I}$ is the peak-to-peak inductor ripple current and f is the switching frequency. The inductor peak-to-peak current ripple is typically set to be 40% of the maximum dc load current. Using this guideline and solving for L ,

$$
L=\frac{V_{O U T}}{f\left(40 \% I_{\text {LOAD }(M A X)}\right)}\left(1-\frac{V_{O U T}}{V_{I N}}\right)
$$

It is important to ensure that the inductor is capable of handling the maximum peak inductor current, ILPK, determined by

$$
I_{L P K}=I_{L O A D(M A X)}+\frac{\Delta I_{L}}{2}
$$

When SW duty-cycle is less than 15%, the inductor should be chosen $1 u \mathrm{H}$.

Inductor Core Selection

Different core materials and shapes will change the size/current and price/current relationship of an inductor. Toroid or shielded pot cores in ferrite or permalloy materials are small and don't radiate much energy, but generally cost more than powdered iron core inductors with similar electrical characteristics. The choice of which style inductor to use often depends more on the price vs. size requirements and any radiated field EMI requirements than on what the WD1033 requires to operate.

Input Capacitor Selection

Capacitor ESR is a major contributor to input ripple in high-frequency DC-DC converters. Ordinary aluminum electrolytic capacitors have high ESR and should be avoided. Low-ESR tantalum or polymer capacitors are better and provide a compact solution for space constrained surface mount designs. Ceramic capacitors have the lowest overall ESR. The input filter capacitor reduces peak currents and noise at the input voltage source. Connect a low ESR bulk capacitor ($2.2 \mu \mathrm{~F}$ to $10 \mu \mathrm{~F}$) to the input. Select this bulk capacitor to meet the input ripple requirements and voltage rating rather than capacitance value. Use the following equation to calculate the maximum RMS input current:

$$
I_{\text {RMS }}=\frac{I_{\text {OUT }}}{V_{I N}} \sqrt{V_{\text {OUT }} \times\left(V_{I N}-V_{\text {OUT }}\right)}
$$

Output Capacitor Selection

Ceramic capacitors with low-ESR values have the lowest output voltage ripple and are recommended. At nominal load current, the device operates in PWM mode, and the RMS ripple current is calculated as:

$$
I_{\text {RMSCout }}=V_{\text {OUT }} \times \frac{1-\frac{V_{\text {OUT }}}{V_{I N}}}{L \times f} \times \frac{1}{2 \times \sqrt{3}}
$$

At nominal load current, the device operates in PWM mode, and the overall output voltage ripple is the sum of the voltage spike caused by the output capacitor ESR plus the voltage ripple caused by charging and discharging the output capacitor:

$$
\Delta V=V_{\text {OUT }} \times \frac{1-\frac{V_{\text {OUT }}}{V_{I N}}}{L \times f} \times\left(\frac{1}{8 \times C_{\text {OUT }} \times f}+E S R\right)
$$

At light load currents, the converter operates in pulse skipping mode, and the output voltage ripple is dependent on the capacitor and inductor values. Larger output capacitor and inductor values minimize the voltage ripple in PSM operation and tighten dc output accuracy in PSM operation.

PC Board Layout Considerations

A good circuit board layout aids in extracting the most performance from the WD1033. Poor circuit layout degrades the output ripple and the electromagnetic interference (EMI) or electromagnetic compatibility (EMC) performance. The evaluation board layout is optimized for the WD1033. Use this layout for best performance. If this layout needs changing, use the following guidelines:

1. Use separate analog and power ground planes. Connect the sensitive analog circuitry (such as voltage divider components) to analog ground; connect the power components (such as input and output bypass capacitors) to power ground. Connect the two ground planes together near the load to reduce the effects of voltage dropped on circuit board traces. Locate C_{IN} as close to the Vin pin as possible, and use separate input bypass capacitors for the analog.
2. Route the high current path from C_{IN}, through L , to the SW and PGND pins as short as possible.
3. Keep high current traces as short and as wide as possible.
4. Place the feedback resistors as close as possible to the FB pin to prevent noise pickup.
5. Avoid routing high impedance traces, such as FB, near the high current traces and components or near the switch node (SW).
6. If high impedance traces are routed near high current and/or the SW node, place a ground plane shield between the traces.

WD1033E PCB Suggest Layout (Demo)

PACKAGE OUTLINE DIMENSIONS
SOT-23-5L

SIDE VIEW

Symbol	Dimensions in Millimeters		
	Min.	Typ.	Max.
A	-	-	1.45
A1	0.00	-	0.15
A2	0.90	1.10	1.30
b	0.30	0.40	0.50
c	0.10	-	0.21
D	2.72	2.92	3.12
E	2.60	2.80	3.00
E1	1.40	1.60	1.80
e		0.95 BSC	
e1	0.30	1.90 BSC	
L	0.10	0.45	0.60
M	0.00	0.15	0.25
K	0°	-	0.25
θ		-	8°

TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	∇ 7inch \ulcorner 13inch	- 13inch		
W	Overall width of the carrier tape	$\checkmark 8 \mathrm{~mm}$	$\ulcorner 12 \mathrm{~mm}$	$\ulcorner 16 \mathrm{~mm}$	
P1	Pitch between successive cavity centers	$\ulcorner 2 \mathrm{~mm}$	V 4mm	$\ulcorner 8 \mathrm{~mm}$	
Pin1	Pin1 Quadrant	$\ulcorner\mathrm{Q} 1$	$\ulcorner\mathrm{Q} 2$	V Q3	\ulcorner Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Switching Controllers category:
Click to view products by Will Semiconductor manufacturer:
Other Similar products are found below :
NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600 AZ7500BMTR-E1 SG3845DM NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1365AABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ ISL6421ERZ

