

WD1035DH

High Efficiency 5V, 3A continuous, 1.5MHz Synchronous Step-Down Regulator

Descriptions

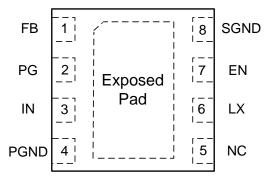
WD1035DH is a high efficiency 1.5MHz synchronous step-Down DC/DC regulator capable of delivering up to 3A output current. It can operate over a wide input voltage range from 2.7V to 5.5V and integrate main switch and synchronous switch with very low R_{DSON} to minimize the conduction loss.

WD1035DH also provides over temperature protection (OTP), under-voltage lockout (UVLO), V_{OUT} short protection.

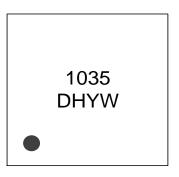
The WD1035DH is available in the DFN2x2-8L package. Standard product is Pb-Free and Halogen-Free.

Features

- Low Rdson internal Switches (top/bottom): $100/60m\Omega$
- 2.7-5.5V input voltage range
- 3A continuous load current capability
- 1.5MHz switching frequency minimizes the external components
- 45uA low quiescent current
- Internal soft-start limits the inrush current
- Constant On Time (COT) Control for fast transient response
- 100% Duty-Cycle Mode
- Power-Good Output

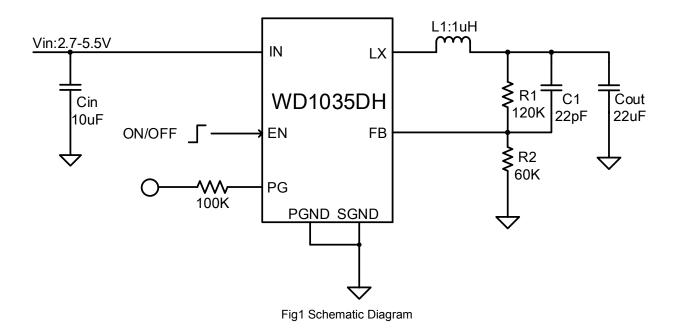

Applications

- Smart Phones
- TV
- Set Top Box and OTT box
- Access Point Router


Http//:www.sh-willsemi.com

DFN2x2-8L Package

Pin configuration (Top view)


1035 = Device Code
DH = Special code
Y = Year Code
W = Week Code
Marking

Order information

Device	Package	Shipping
WD1035DH-8/TR	DFN2x2-8L	3000/Reel&Tape

Typical Applications

Pin Descriptions

Pin Name	Pin Number	Pin Description		
FB	1	Feedback pin. Connected to the feedback resistor for adjustable		
ГВ	ı	version or VOUT for fix output version.		
		Power good indicator. The output of this pin is an open-drain with		
PG	2	2 external pull-up resistor. PG is pulled up when the FB voltage is within		
		90%, otherwise it is LOW.		
IN	3	Input pin. Decouple this pin to GND with at least 10uF ceramic Cap.		
PGND	4	Power Ground.		
NC	5	No Internal Connection.		
LX	6	Inductor pin.		
EN	7	Enable Control. Pull high to turn on. Do not leave it floating .		
SGND	8	Signal Ground.		
Exposed Dad		The exposed pad must be soldered to a large PCB and connected to		
Exposed Pad		PGND for maximum power dissipation.		

Will Semiconductor Ltd. 2 2018.03 - Rev. 1.0.2

Absolute Maximum Ratings (1)

Parameter		MIN	MAX	Unit
Power Supply VCC		-0.3	6.5	V
Others Pins		-0.3	VCC+0.6	V
Power Dissipation, PD @ TA=2	25℃,DFN2X2-8L		2.19	W
Package Thermal Resistance T _{JA}			50	°C /W
Package Thermal Resistance T _{JC}			8	°C /W
Junction Temperature T _J			150	°C
Lead Temperature (Soldering,10 sec)			260	°C
Storage Temperature Range		-65	150	°C
FOD Detions	НВМ	20	00	V
ESD Ratings	CDM	2000		V

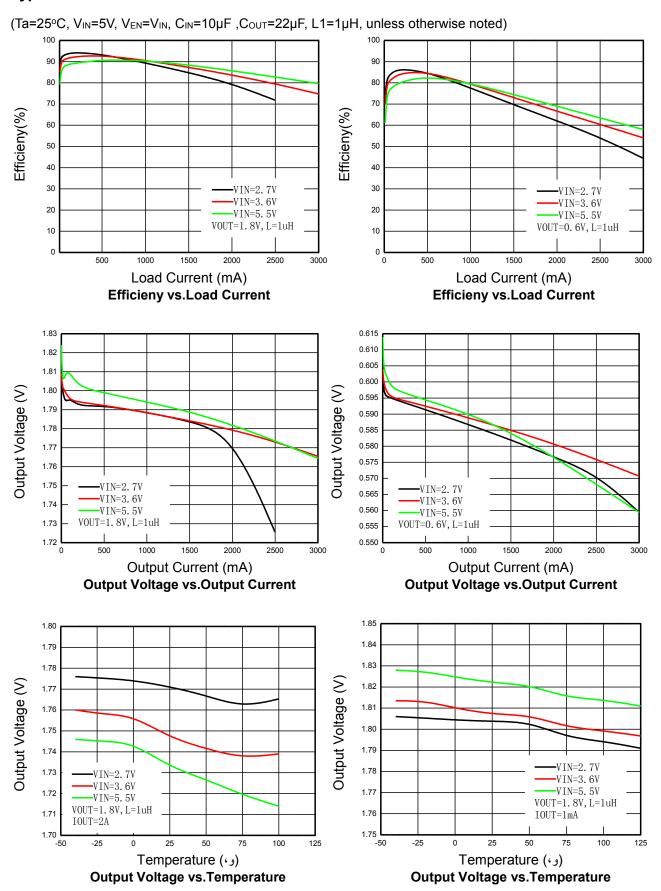
⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

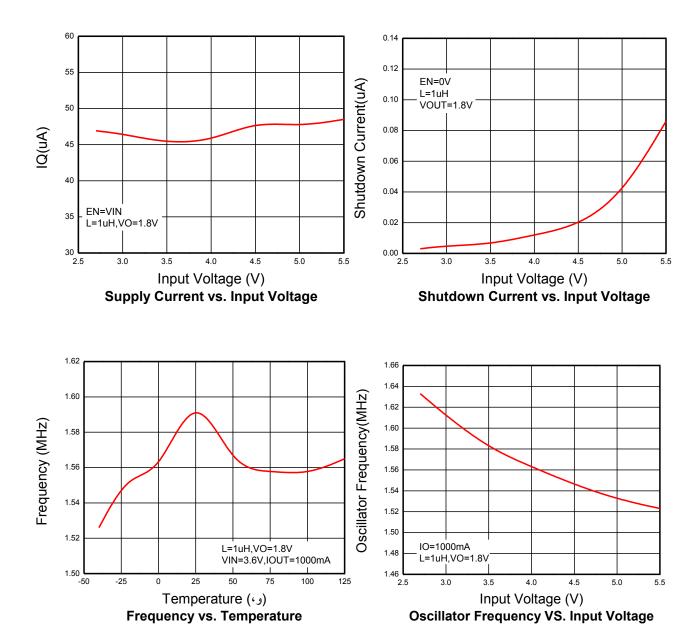
Parameter	MIN	MAX	Unit
Power Supply VCC	2.7	5.5	V
Junction temperature T _J	-40	125	°C
Ambient temperature T _A	-40	85	°C

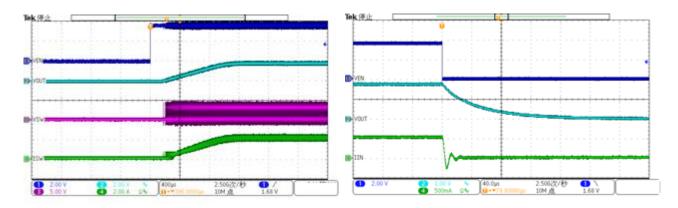
Will Semiconductor Ltd. 3 2018.03 - Rev. 1.0.2

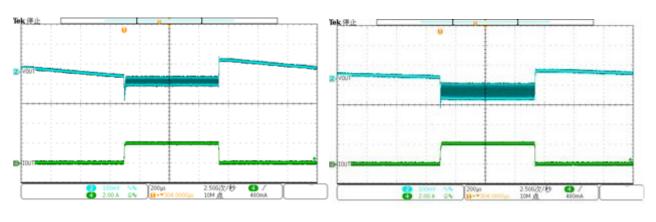
Electronics Characteristics

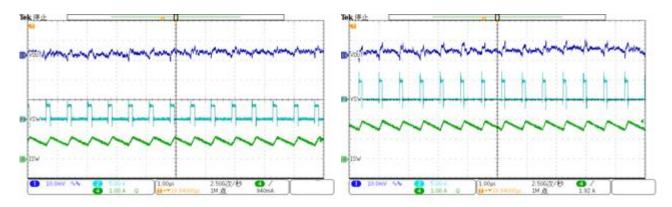

Unless otherwise specified: limits for typical values are for T_A = 25°C and minimum and maximum limits apply over the operating ambient temperature range (-40°C < T_A < 85°C); VIN=4.2V,Vout=2.5V,L1=1uH,Cout=22uF.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Operation Voltage Range	Vin		2.7		5.5	V
VINI Linday Valtaga Landa C	V _{UVLO} -H	V _{IN} Rising		2.45		V
VIN Under Voltage Lockout	V _{UVLO} -L	V _{IN} Falling		2.25		V
Quiescent Current	ΙQ	Switching		45		uA
Shutdown Current	I _{SD}	V _{EN} =GND, V _{IN} =3.6V			1	μA
Feedback Reference	V _{REF}		0.588	0.6	0.612	V
Line Regulation	Δ V _{OUT} / Δ V _{IN}			0.35		%/V
PFET Rdson	Rdson P			100		~ 0
NFET Rdson	Rdson N			60		mΩ
PFET Current Limit	ILIMT			4.5		Α
Oscillator Frequency	Fosc			1.5		MHz
Max Duty Cycle				100		%
Soft Start Time				800		uS
Power on delay time				25		uS
Input OVP shutdown	V _{OVP}	Rising		6.3		V
Input OVP Shutdown	VOVP	Falling	5.6	6		V
Over Volatage Protection				20		uS
Blanking Time				20		uS
Thermal Shutdown				150		°C
Thermal Shutdown				30		°C
Hysteresis				30		
EN Input LOW Voltage	VIL				0.4	V
EN Input HIGH Voltage	V _{IH}		1.4			V


Will Semiconductor Ltd. 4 2018.03 - Rev. 1.0.2

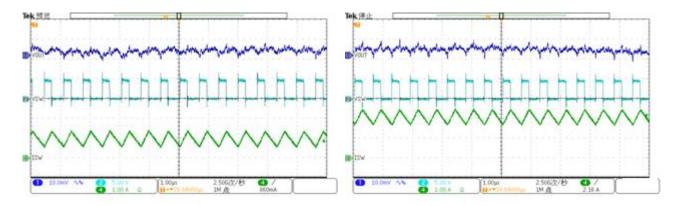

Typical Characteristics



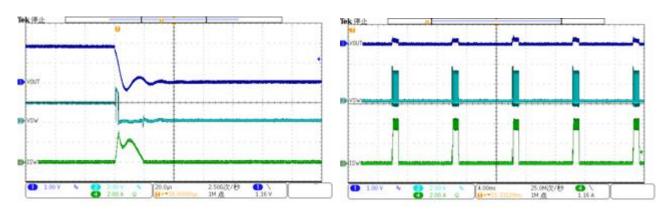

VIN=3.6V, VO=1.8V, EN=3.6V, IO=2A, EN On

VIN=3.6V, VO=1.8V, EN=3.6V, IO=1A, EN Off

Load Transient Response
VIN=5V,VO=1.8V,EN=3.6V,IO=1mA-2A


Load Transient Response VIN=5V,VO=0.6V,EN=5V,IO=1mA-2A

Ripple: VIN=5.0V, VO=0.6V, EN=3.6V IO=1A


Ripple: VIN=5.0V, VO=0.6V, EN=3.6V IO=2A

Ripple: VIN=5.0V, VO=1.8V, EN=3.6V IO=1A

Ripple: VIN=5.0V, VO=1.8V, EN=3.6V IO=2A

VIN=3.6V, VO=1.8V, EN=3.6V VOUT short

Operation Information

WD1035DH is a high efficiency 1.5MHz synchronous Step-Down DC/DC regulator IC capable of delivering up to 3A output current. It can operate over a wide input voltage range from 2.7V to 5.5V and integrate main switch and synchronous switch with very low R_{DSON} to minimize the conduction loss.

Application Information

Because of the high integration in the WD1035DH IC, the application circuit based on this regulator IC is rather simple. Only input capacitor Cin, output capacitor Cout, output inductor L and feedback resistors (R_H and R_L) need to be selected for the targeted applications specifications.

Feedback resistor dividers R_H and R_L :

Choose RH and RL to program the proper output voltage. To minimize the power consumption under light loads, it is desirable to choose larger resistance values for both R_H and R_L. A value of between $100k\Omega$ and $1M\Omega$ is highly recommended for both resistors. If R_L =120k Ω is chosen, then R_H can be calculated to be:

$$R_{H} = \frac{(V_{out} - 0.6V) * R_{L}}{0.6V}$$

Input capacitor C_{IN}:

A Typical X7R or better grade ceramic capacitor with 10V rating and greater than 10uF capacitor is recommended. To minimize the potential noise problem, place this ceramic capacitor really close to the VIN and GND pins. Care should be taken to minimize the loop area formed by C_{IN} ,and VIN/GND pins.

Output inductor L:

There are several considerations in choosing this inductor.

1) Choose the inductance to provide the desired

ripple current. It is suggested to choose the ripple current to be about 40% of the maximum output current. The inductance is calculated as:

$$L = \frac{V_{OUT}(1 - V_{out}/V_{IN,MAX})}{F_{SW} \times I_{OUT,MAX \times 40\%}}$$

Where Fsw is the switching frequency and lout,max is the maximum load current.

2) The saturation current rating of the inductor must be selected to be greater than the peak inductor current under full load conditions.

$$I_{SAT,MIN} > I_{OUT,MAX} + \frac{V_{OUT}(1 - V_{out}/V_{IN,MAX})}{2*F_{SW}*L}$$

3) The DCR of the inductor and the core loss at the switching frequency must be low enough to achieve the desired efficiency requirement. It is desirable to choose an inductor with DCR<25m Ω to achieve a good overall efficiency.

Inductor vs. Output Capacitor:

The ripple base control strategy need very little COUT to confirm stability. Too large inductor and COUT will lead to instability.

Power good:

The WD1035DH has a power good output. The PG pin goes high impedance once the output is above 90% and below 110% of the nominal voltage, and is driven low once the output voltage falls below typically 85% or above 115% of the nominal voltage. The PG pin is an open-drain output and is specified to sink up to 1 mA. The power good output requires a pull-up resistor connecting to any voltage rail less than 5.5 V. The PG signal can be used for sequencing of multiple rails by connecting it to the EN pin of other converters. Leave the PG pin unconnected when not used.

OCP and SCP protection:

With load current increasing, the NFET current will get higher than valley current limit threshold. The

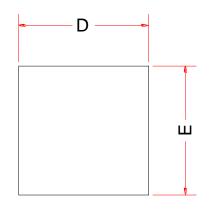
Will Semiconductor Ltd. 9 2018.03 - Rev. 1.0.2

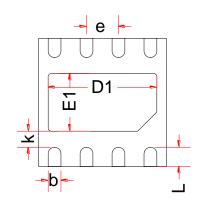
NFET will keep turning on until NFET current decrease to the valley current limit threshold, so that valley current is limited. If the load current continues to increase, the output voltage will drop. When the output voltage falls below 30% of the regulation level, output short is detected and the IC will work in hiccup mode. During the hiccup, the regulator waits every 8 soft-start time before a soft-start. If at the time of soft-start finish, VOUT is still below 30% of the regulation level, the regulator will wait another 8 soft-start time before another soft-start. The hiccup reduces the power dissipation of the IC under short circuit conditions. If the hard short is removed, IC will go back to normal operation.

Layout Consideration

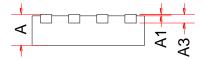
The layout design of WD1035DH regulator is relatively simple. For the best efficiency and minimum noise problems, we should place the

following components close to the IC: Cin, L, R_{H} and R_{L} .


- 1) It is desirable to maximize the PCB copper area connecting to GND pin to achieve the best thermal and noise performance. If the board space allowed, a ground plane is highly desirable. Reasonable vias are suggested to be placed underneath the ground pad to enhance the soldering quality and thermal performance.
- 2) Cin must be close to Pins VIN and GND. The loop area formed by Cin and GND must be minimized. Cout must be close to the Chip, too.
- 3) The PCB copper area associated with SW pin must be minimized to avoid the potential noise problem.
- 4) The components R_H and R_L , and the trace connecting to the FB pin must NOT be adjacent to the SW net on the PCB layout to avoid the noise problem.


Will Semiconductor Ltd. 10 2018.03 - Rev. 1.0.2

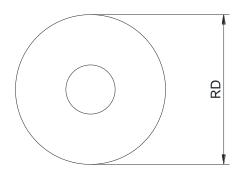
PACKAGE OUTLINE DIMENSIONS


DFN2x2-8L

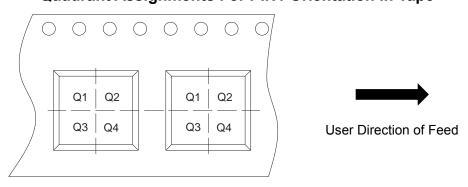
TOP VIEW

BOTTOM VIEW

SIDE VIEW


Compleal	Dimensions in Millimeters				
Symbol	Min.	Тур.	Max.		
А	0.50	0.55	0.60		
A1	0.00	0.00			
A3		0.15Ref			
D	1.90	2.00	2.10		
Е	1.90	2.00	2.10		
D1	1.60	1.60 1.70			
E1	0.80	0.80 0.90			
k	0.20	-	-		
b	0.15 0.20		0.25		
е	0.50BSC				
L	0.25	0.30	0.35		

Will Semiconductor Ltd. 11 2018.03 - Rev. 1.0.2


TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

RD	Reel Dimension	▼ 7inch	☐ 13inch		
W	Overall width of the carrier tape	☑ 8mm	☐ 12mm	☐ 16mm	
P1	Pitch between successive cavity centers	☐ 2mm	✓ 4mm	☐ 8mm	
Pin1	Pin1 Quadrant	▼ Q1	□ Q2	□ Q3	□ Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Switching Controllers category:

Click to view products by Will Semiconductor manufacturer:

Other Similar products are found below:

NCP1218AD65R2G NCP1244BD065R2G NCP1336ADR2G NCP6153MNTWG NCP81101BMNTXG NCP81205MNTXG SJE6600

AZ7500BMTR-E1 SG3845DM NCP1250BP65G NCP4204MNTXG NCP6132AMNR2G NCP81102MNTXG NCP81206MNTXG NCP1240AD065R2G NCP1240FD065R2G NCP1361BABAYSNT1G NCP1230P100G NX2124CSTR SG2845M NCP1366BABAYDR2G NCP81101MNTXG NCP81174NMNTXG NCP4308DMTTWG NCP4308AMTTWG NCP1366AABAYDR2G NCP1251FSN65T1G NCP1246BLD065R2G MB39A136PFT-G-BND-ERE1 NCP1256BSN100T1G LV5768V-A-TLM-E NCP1365BABCYDR2G NCP1246ALD065R2G AZ494AP-E1 CR1510-10 NCP4205MNTXG XRP6141ELTR-F RY8017 LP6260SQVF LP6298QVF ISL6121LIB ISL6225CA ISL6244HRZ ISL6268CAZ ISL6315IRZ ISL6420AIAZ-TK ISL6420AIRZ ISL6420IAZ ISL6421ERZ