WS4665

6A, 14m Ω Load Switch with Quick Output Discharge and Adjustable Rise Time

DESCRIPTION

The WS4665 is a single channel load switch that provides configurable rise time to minimize inrush current. The device contains an N-channel MOSFET that can operate over an input voltage range of 0.8 V to 5.5 V and can support a maximum continuous current of 6A. The switch is controlled by an on/off input (ON), which is capable of interfacing directly with low-voltage control signals. In the WS4665, a 230Ω on-chip load resistor is added for quick output discharge when switch is turned off.

The WS4665 is available in a small, space-saving $2.00 \mathrm{~mm} \times 2.00 \mathrm{~mm} 8$-pin DFN package. Standard Products are Pb -free and halogen-free.

FEATURES

- Integrated Single Channel Load Switch
- Input Voltage Range: 0.8 V to 5.5 V
- Ultra-Low On Resistance (Ron)
- Ron $=14 \mathrm{~m} \Omega$ at $\mathrm{VIN}=5 \mathrm{~V}(\mathrm{VBIAS}=5 \mathrm{~V})$
- 6-A Maximum Continuous Switch Current
- Low Control Input Threshold Enables Use of 1.2-V, $1.8-\mathrm{V}, 2.5-\mathrm{V}$ and $3.3-\mathrm{V}$ Logic
- Configurable Rise Time
- Quick Output Discharge (QOD)
- DFN8 2x2 8L Package
- ESD Performance Tested per JESD 22
- 2000V HBM and 1000V CDM

APPLICATIONS

- Ultrabook ${ }^{\text {TM }}$
- Notebooks/Netbooks
- Tablet PC
- Consumer Electronics
- Set-top Boxes/Residential Gateways
- Telecom Systems
http/:www.sh-willsemi.com

Pin configuration (Top view)

DFN2x2-8L
4665 = Device code
DA = Package code
Y = Year code
W = Week code
Marking

Order information

Device	Package	Shipping
WS4665D-8/TR	DFN2x2-8L	3000/Reel\&Tape

TYPICAL APPLICATION

Typical Application

PIN DESCRIPTION

PIN No.	PIN NAME	I/O	DESCRIPTION
1	VIN	I	Switch input. Input bypass capacitor recommended for minimizing VIN dip.
2	VIN	I	Switch input. Input bypass capacitor recommended for minimizing VIN dip.
3	ON	I	Active high switch control input. Do not leave floating.
4	VBIAS	I	Bias voltage. Power supply to the device. Recommended voltage range for this pin is 2.5V to 5.5 V.
5	GND	-	Device ground.
6	CT	O	Switch slew rate control. Can be left floating.
7	VOUT	O	Switch output.
8	VOUT	O	Switch output.

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {IN }}$	Input voltage range	-0.3 to 6	V
$\mathrm{~V}_{\text {OUT }}$	Output voltage range	-0.3 to 6	V
$\mathrm{~V}_{\text {BIAS }}$	Bias voltage range	-0.3 to 6	V
$\mathrm{~V}_{\text {ON }}$	Input voltage range	-0.3 to 6	V
$\mathrm{I}_{\text {MAX }}$	Maximum continuous switch current	6	A
$\mathrm{I}_{\text {PLS }}$	Maximum pulsed switch current, pulse < 300uS, 2\% duty cycle	8	A
$\mathrm{~T}_{\mathrm{A}}$	Operating free-air temperature range (Note1)	-40 to 85	${ }^{\circ} \mathrm{C}$
T_{J}	Maximum junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-60 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {LEAD }}$	Maximum lead temperature (10-s soldering time)	300	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic discharge protection	Human-Body Model (HBM)	2000
V			
	Charged-Device Model (CDM)	1000	

These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.
Note 1: In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be de-rated. Maximum ambient temperature ($\mathrm{T}_{\mathrm{A}(\max)}$) is dependent on the maximum operating junction temperature [TJ(max)], the maximum power dissipation of the device in the application $[P D(\max)]$, and the junction-to-ambient thermal resistance of the part/package in the application $\left(\mathrm{q}_{\mathrm{JA}}\right)$, as given by the following equation: $\mathrm{T}_{A}(\max)=\mathrm{T}_{\mathrm{J}}(\max)-\left(\mathrm{q}_{\mathrm{JA}} \times P_{D}(\max)\right)$

THERMAL INFORMATION

Thermal Metric	WS4665 DFN2*2-8L(FC)	Units
q_{JA}	Junction-to-ambient thermal resistance	62
${ }^{\circ} \mathrm{C} / \mathrm{W}$		

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	MIN	MAX	UNIT
VIN	Input voltage range	0.8	VBIAS	V
VBIAS	Bias voltage range	2.5	5.5	V
VON	ON voltage range	0	5.5	V
VOUT	Output voltage range		VIN	V
VIH	High-level input voltage, ON	VBIAS=2.5V to 5.5 V	1.2	5.5
VIL	Low-level input voltage, ON	VBIAS=2.5V to 5.5 V	0	0.4
CIN	Input capacitor	1		$\mu \mathrm{~F}$

ELECTRICAL CHARACTERISTICS

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BIAS}}=5.0 \mathrm{~V}$. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Test Conditions		TA	Min	Typ	Max	Unit
Power Supplies and Currents							
In(vilas-on) $V_{\text {BIAS }}$ quiescent current	lout $=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {ON }}=5.0 \mathrm{~V}$		Full		66	75	$\mu \mathrm{A}$
IIn(VBIAS-ofF) VBIAS shutdown current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}$, $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		Full			0.01	$\mu \mathrm{A}$
IIN(VIN-OFF) $\mathrm{V}_{\text {IN }}$ off-state supply current	$\begin{aligned} & \mathrm{V}_{\text {ON }}=\mathrm{GND}, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\mathrm{VIN}=5.0 \mathrm{~V}$	Full		0.002	0.7	$\mu \mathrm{A}$
		$\mathrm{VIN}=3.3 \mathrm{~V}$			0.001	0.5	
		$\mathrm{VIN}=1.8 \mathrm{~V}$			0	0.4	
		$\mathrm{VIN}=0.8 \mathrm{~V}$			0	0.3	
Ion ON pin input leakage current	$\mathrm{V}_{\text {ON }}=5.5 \mathrm{~V}$		Full			0.01	$\mu \mathrm{A}$
Resistance Characteristics							
Ron ON-state resistance	$\begin{gathered} \text { lout }=-200 \mathrm{~mA}, \\ V_{\text {BIAS }}=5.0 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		14.2		$\mathrm{m} \Omega$
			Full			22	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		14.2		$\mathrm{m} \Omega$
			Full			21.5	
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		14.2		$\mathrm{m} \Omega$
			Full			21.5	
		$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		14.2		$\mathrm{m} \Omega$
			Full			21	
		$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		14.2		$\mathrm{m} \Omega$
			Full			21	
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		14.2		$\mathrm{m} \Omega$
			Full			21	
$R_{\text {PD }}$ Output pull-down resistance	$\begin{aligned} & \mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=0 \mathrm{~V}, \\ & \text { lout }=15 \mathrm{~mA} \end{aligned}$		Full		230	250	Ω

ELECTRICAL CHARACTERISTICS (Continuous)

Unless otherwise noted, the specification in the following table applies over the operating ambient temperature $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}$. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Test Conditions		TA	Min	Typ	Max	Unit
Power Supplies and Currents							
IIn(VBIAS-on) $V_{\text {BIAS }}$ quiescent current	$\mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {ON }}=2.5 \mathrm{~V}$		Full		35	45	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN(VBIAS-OFF) }}$ $V_{\text {BIAS }}$ shutdown current	$\mathrm{V}_{\text {ON }}=\mathrm{GND}, \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$		Full			0.01	$\mu \mathrm{A}$
IIN(VIN-OFF) $\mathrm{V}_{\text {IN }}$ off-state supply current	$\begin{aligned} & \mathrm{V}_{\text {ON }}=\mathrm{GND}, \\ & \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \end{aligned}$	$\mathrm{VIN}=2.5 \mathrm{~V}$	Full		0.001	0.5	$\mu \mathrm{A}$
		$\mathrm{VIN}=1.8 \mathrm{~V}$			0.001	0.47	
		$\mathrm{VIN}=1.2 \mathrm{~V}$			0	0.41	
		$\mathrm{VIN}=0.8 \mathrm{~V}$			0	0.4	
Ion ON pin input leakage current	V ON $=5.5 \mathrm{~V}$		Full			0.01	$\mu \mathrm{A}$
Resistance Characteristics							
Ron ON-state resistance	$\begin{gathered} \text { lout }=-200 \mathrm{~mA}, \\ \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		16		$\mathrm{m} \Omega$
			Full			22	
		$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		15.7		$\mathrm{m} \Omega$
			Full			21.7	
		$\mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		15.6		$\mathrm{m} \Omega$
			Full			21.5	
		$\mathrm{V}_{\mathrm{IN}}=1.2 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		15.6		$\mathrm{m} \Omega$
			Full			21.4	
		$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	$25^{\circ} \mathrm{C}$		15.5		$\mathrm{m} \Omega$
			Full			21.3	
$R_{\text {PD }}$ Output pull-down resistance	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=0 \mathrm{~V}, \\ & \text { lout }=1 \mathrm{~mA} \end{aligned}$		Full		255	270	Ω

SWITCHING CHARACTERISTICS MEASUREMENT INFORMATION

TEST CIRCUIT

$\mathrm{t}_{\text {ON }} / \mathrm{t}_{\text {OFF }}$ WAVEFORMS

SWITCHING CHARACTERISTICS

PARAMETER	TEST CONDITION	MIN TYP	MAX	UNIT
$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)				
ton Turn-on time	$\mathrm{RL}=10 \Omega, \mathrm{CL}=0.1 \mathrm{uF}, \mathrm{CT}=1000 \mathrm{pF}$	1380		$\mu \mathrm{s}$
toff Turn-off time		15		
$\mathrm{t}_{\mathrm{R}} \quad V_{\text {OUt }}$ rise time		2236		
$t_{F} \quad$ Vout fall time		5		
$t_{D} \quad$ ON delay time		322		
$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=\mathrm{V}_{\text {BIAS }}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25{ }^{\circ} \mathrm{C}$ (unless otherwise noted)				
ton Turn-on time	$\mathrm{RL}=10 \Omega, \mathrm{CL}=0.1 \mathrm{uF}, \mathrm{CT}=1000 \mathrm{pF}$	550		$\mu \mathrm{s}$
toff Turn-off time		76		
$\mathrm{t}_{\mathrm{R}} \quad V_{\text {OUt }}$ rise time		290		
$t_{F} \quad$ Vout fall time		6		
t_{D} ON delay time		363		
$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ON}}=5 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)				
ton Turn-on time	$\mathrm{RL}=10 \Omega, \mathrm{CL}=0.1 \mathrm{uF}, \mathrm{CT}=1000 \mathrm{p}$	2226		$\mu \mathrm{s}$
toff Turn-off time		22		
$\mathrm{t}_{\mathrm{R}} \quad V_{\text {OUt }}$ rise time		2544		
$\mathrm{t}_{\mathrm{F}} \quad$ Vout fall time		4.9		
$\mathrm{t}_{\mathrm{D}} \quad$ ON delay time		720		
$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\text {ON }}=5 \mathrm{~V}, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (unless otherwise noted)				
ton Turn-on time	$\mathrm{RL}=10 \Omega, \mathrm{CL}=0.1 \mathrm{uF}, \mathrm{CT}=1000 \mathrm{pF}$	1200		$\mu \mathrm{s}$
toff Turn-off time		72		
$\mathrm{t}_{\mathrm{R}} \quad$ Vout rise time		856		
$t_{F} \quad$ Vout fall time		6.1		
t_{D} ON delay time		736		

TYPICAL CHARACTERISTICS $\left(\mathbf{T a}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Quiescent Current vs. VBIAs

OFF-State V_{IN} Current vs. V_{IN}

Ron vs. TEMPERATURE ($\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}$)

Shutdown Current vs. VBIAS

Ron vs. TEMPERATURE ($\mathrm{V}_{\mathrm{BIAS}} \mathbf{=} \mathbf{2 . 5 \mathrm { V }}$)

Ron vs. TEMPERATURE ($\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}$)

Ron vs. $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\text {BIAS }}=5.5 \mathrm{~V}\right)$

Red $^{\text {vs. }}$ VIN $\left(\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}\right)$

t_{D} vs. $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

Ron vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right)$

Vout vs. $\mathrm{Von}^{\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)}$

t_{D} vs. $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

t_{F} vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

toff Vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

ton vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{V}_{\mathrm{BIAS}}=\mathbf{2 . 5} \mathrm{V}, \mathrm{CT}=1 \mathrm{nF}\right)$

t_{F} vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

toff vs. $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

$t_{\text {ON }}$ vs. $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\text {BIAS }}=5.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

$t_{\text {R }}$ vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

$t_{\text {R }}$ vs. $V_{\text {BIAS }}\left(\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

t_{R} vs. $\mathrm{V}_{\mathrm{IN}}\left(\mathrm{V}_{\mathrm{BIAS}}=5.5 \mathrm{~V}, \mathrm{CT}=1 \mathrm{nF}\right)$

TYPICAL AC SCOPE CAPTURES (at TA= $25^{\circ} \mathrm{C}, \quad \mathrm{CT}=1 \mathrm{nF}$ ($\mathrm{CH} 1=\mathrm{ON}, \quad \mathrm{CH} 2=\mathrm{VOUT}$)

TURN-ON RESPONSE TIME
$\left(\mathrm{V}_{\mathbb{I N}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{C}_{\operatorname{IN}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TURN-ON RESPONSE TIME
$\left(\mathrm{V}_{\text {IN }}=2.5, \mathrm{~V}_{\text {BIAS }}=2.5 \mathrm{~V}, \mathrm{C}_{\mathbb{N}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TURN-OFF RESPONSE TIME
$\left(\mathrm{V}_{\mathbb{I N}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{C}_{\mathbb{I N}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TURN-OFF RESPONSE TIME
$\left(\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=2.5 \mathrm{~V}, \mathrm{C}_{\text {IN }}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TURN-ON RESPONSE TIME $\left(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{RL}=10 \Omega\right)$ Tek停止

TURN-ON RESPONSE TIME
$\left(\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TURN-OFF RESPONSE TIME
$\left(\mathrm{V}_{\mathbb{I N}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathbb{I N}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

TURN-OFF RESPONSE TIME
$\left(\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{IN}}=1 \mathrm{uF}, \mathrm{C}_{\mathrm{L}}=0.1 \mathrm{uF}, \mathrm{R}_{\mathrm{L}}=10 \Omega\right)$

APPLICATION INFORMATION

ON/OFF CONTROL

The ON pin controls the state of the switch. Asserting ON high enables the switch. ON is active high and has a low threshold, making it capable of interfacing with low-voltage signals. The ON pin is compatible with standard GPIO logic thresholds. It can be used with any microcontroller with 1.2 V or higher GPIO voltage. This pin cannot be left floating and must be driven either high or low for proper functionality.

INPUT CAPACITOR (OPTIONAL)

To limit the voltage drop on the input supply caused by transient inrush currents when the switch turns on into a discharged load capacitor or short-circuit, a capacitor needs to be placed between VIN and GND. A 1-uF ceramic capacitor, $\mathrm{C}_{\mathbb{N}}$, placed close to the pins, is usually sufficient. Higher values of C_{IN} can be used to further reduce the voltage drop during high current applications. When switching heavy loads, it is recommended to have an input capacitor about 10 times higher than the output capacitor to avoid excessive voltage drop.

OUTPUT CAPACITOR (OPTIONAL)

Due to the integrated body diode in the NMOS switch, a $C_{I N}$ greater than C_{L} is highly recommended. $A C_{L}$ greater than C_{IN} can cause $\mathrm{V}_{\text {OUt }}$ to exceed V_{IN} when the system supply is removed. This could result in current flow through the body diode from VOUT to VIN. A C_{IN} to C_{L} ratio of 10 to 1 is recommended for minimizing $V_{\mathbb{I N}}$ dip caused by inrush currents during startup, however a 10 to 1 ratio for capacitance is not required for proper functionality of the device. A ratio smaller than 10 to 1 (such as 1 to 1) could cause slightly more VIN dip upon turn-on due to inrush currents. This can be mitigated by increasing the capacitance on the CT pin for a longer rise time (see ADJUSTABLE RISE TIME section below).

VIN AND VBIAS VOLTAGE RANGE

For optimal Ron performance, make sure VIN \leq VBIAS. The device will still be functional if VIN $>$ VBIAS but it will exhibit RON greater than what is listed in the ELECTRICAL CHARACTERISTICS table. See below Figure for an example of a typical device. Notice the increasing Ron as VIN exceeds VBIAS voltage. Be sure to never exceed the maximum voltage rating for VIN and VBIAS.

ADJUSTABLE RISE TIME
A capacitor to GND on the CT pin sets the slew rate. The voltage on the CT pin can be as high as 11 V . Therefore, the minimum voltage rating for the CT cap should be 25 V for optimal performance.
The table below contains rise time values measured on a typical device. Rise times shown below only valid for the power-up sequence where VIN and VBIAS are already in steady state condition, and the ON pin is asserted high.

CT(pF)	RISE TIME(us) $10 \%-90 \%, C L=0.1 u F, C \mathbb{N}=1 u F, R L=10 \Omega$, VBAS $=5 V$ TYPICAL VALUES at $25^{\circ} \mathrm{C}$ with a 25 V X7R 10% CERAMIC CAPACITOR on CT								
	$\mathrm{V} \mathbb{N}=5 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=4.2 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=3.3 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=2.5 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=1.8 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=1.5 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=1.2 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=1.05 \mathrm{~V}$	$\mathrm{V} \mathbb{N}=0.8 \mathrm{~V}$
0	195	170	132	107	85	76	67	62	54
220	410	340	254	193	145	125	106	97	81
470	1250	1000	728	526	376	314	254	224	178
1000	2220	1760	1260	928	656	550	440	396	306
2200	5060	4100	3020	2170	1550	1290	1040	910	684
4700	10320	8360	6280	4660	3320	2820	2280	2040	1600
10000	20500	16440	12120	8840	6280	5300	4320	3860	3040

BOARD LAYOUT AND THERMAL CONSIDERATIONS

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal operation. Using wide traces for $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and GND helps minimize the parasitic effects along with minimizing the case to ambient thermal impedance.
The maximum IC junction temperature should be restricted to $125^{\circ} \mathrm{C}$ under normal operating conditions. To calculate the maximum allowable dissipation, $\mathrm{P}_{\mathrm{D}(\max)}$ for a given output current and ambient temperature, use the following equation as a guideline:

$$
P_{D(\max)}=\frac{T_{J(\max)}-T_{A}}{\mathrm{q}_{J A}}
$$

Where:
$P_{D(\max)}=$ maximum allowable power dissipation
$\mathrm{T}_{\mathrm{J}(\max)}=$ maximum allowable junction temperature (125 ${ }^{\circ} \mathrm{C}$ for the WS4665)
$\mathrm{T}_{\mathrm{A}}=$ ambient temperature of the device
$q_{J A}=$ junction to air thermal impedance. See Thermal Information section. This parameter is highly dependent upon board layout.
In order to achieve smaller θ_{JA}, the copper area of V_{IN} and $\mathrm{V}_{\text {Out }}$ pin on PCB should be as large as possible.
The figure below shows an example of a layout. Notice that the copper area connected to $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {out }}$ pin is big.

PACKAGE OUTLINE DIMENSIONS

DFN2x2-8L

TOP VIEW

BOTTOM VIEW

Symbol	Dimensions in Millimeters		
	Min.	Typ.	Max.
A	0.50	-	0.60
A1	0.00	-	0.05
A3	1.90	0.15 Ref.	
D	1.90	2.00	2.10
E		2.00	2.10
e	0.20	0.50 Typ.	
b	0.13	-	0.30
b1	0.30	-	0.23
L		-	0.40

TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	∇ 7inch	Γ 13inch	
W	Overall width of the carrier tape	$\nabla 8 \mathrm{~mm}$	$\Gamma_{12 \mathrm{~mm}}$	
P1	Pitch between successive cavity centers	$\Gamma_{2 \mathrm{~mm}}$	$\nabla 4 \mathrm{~mm}$	$\Gamma 8 \mathrm{~mm}$
Pin1	Pin1 Quadrant	$\nabla \mathrm{Q} 1$	$\Gamma \mathrm{Q} 2$	$\Gamma \mathrm{Q} 3$

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Switch ICs - Power Distribution category:
Click to view products by Will Semiconductor manufacturer:

Other Similar products are found below :
AP22652AW6-7 MAPDCC0001 L9349TR-LF MAPDCC0005 NCP45520IMNTWG-L VND5050K-E MP6205DD-LF-P MC15XS3400DHFKR2 FPF1015 FPF1018 DS1222 TCK2065G,LF SZNCP3712ASNT3G L9781TR NCP45520IMNTWG-H MC17XS6500BEK SP2526A-1EN-L/TR SP2526A-2EN-L/TR MAX4999ETJ+T MC22XS4200BEK MAX14575BETA+T VN1160C-1-E VN750PEP-E TLE7244SL BTS50060-1EGA MAX1693HEUB+T MC07XSG517EK TLE7237SL MIC2033-05BYMT-T5 MIC2033-12AYMT-T5 MIC2033-05BYM6-T5 MP6513LGJ-P NCP3902FCCTBG AP22811BW5-7 SLG5NT1437VTR SZNCP3712ASNT1G NCV330MUTBG DML1008LDS-7 MAX4987AEETA+T KTS1670EDA-TR MAX1694EUB+T KTS1640QGDV-TR KTS1641QGDV-TR IPS160HTR BTS500251TADATMA2 NCV451AMNWTBG MC07XS6517BEKR2 SIP43101DQ-T1-E3 DML10M8LDS-13 MAX1922ESA+C71073

