

WS742128

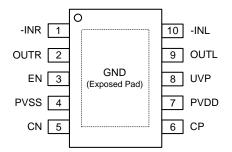
Capless 2Vrms to 3Vrms Line Driver with Adjustable Gain

Descriptions

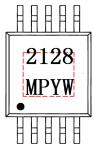
The WS742128 is an integrated solution for Set-top box and high definition player, and designed to optimize the audio driver circuit performance while reducing the BOM cost by eliminating the peripheral discrete components for noise reduction. WS742128 features a 3Vrms stereo audio driver that designed to allow for the removal of output AC-coupling capacitors. Featuring single-ended input mode, gain range of ± 1 V/V to ± 10 V/V can be achieved via external gain resistor setting. The WS742128 is able to offer 3Vrms output at 600 Ω load with 5V supply. Meanwhile, the WS742128 offers built-in shut-down control circuitry for optimal pop-free performance. Under under-voltage condition, WS742128 is able to detect it and mutes the output. WS742128 satisfies MSL3 level requirements.

Applications

- Set-Top Boxes
- High Definition DVD Players
- Car Entertainment System
- Medical


Features

- Single Supply Voltage : 3.0V~5.5V
- THD+N :>100dB
- SNR :>112dB
- -40 °C to 85 °C Operation Range
- Voltage Output at 600Ω Load 2Vrms with 3.3V supply voltage 3Vrms with 5.0V supply voltage
- No Pop/Clicks Noise when Power ON/OFF
- No Need Output DC-Blocking Capacitors
- Optimized Frequency Response between 20Hz~20kHz
- Accepting Differential Input
- Featuring external under voltage mute
- Available in MSOP-10L-EP package
- Ultra Low noise and THD



MSOP-10L-EP

Pin Configuration (Top View)

Marking

2128 = Device code

- MP = Special code
 - Y = Year code
 - W = Week code

Order Information

Device	Package	Shipping
M/9742129M 10/TD		4000/Reel
WS742128M-10/TR	MSOP-10L	&Tape

Pin Descriptions

Pin Number	Symbol	Descriptions
1	-INR	Right-channel negative input
2	OUTR	Right-channel output
3	EN	Enable input, active-high
4	PVSS	Supply voltage
5	CN	Charge-pump flying capacitor negative
6	CP	Charge-pump flying capacitor positive
7	PVDD	Positive supply
8	UVP	Under voltage protection input
9	OUTL	Left-channel output
10	-INL	Left-channel negative input
EP	GND	Power ground

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	$V_{DD}^{(2)}$	6	V
Input Differential Voltage	V _{IDR} ⁽³⁾	±6	V
Input Common Mode Voltage Range	V _{ICR}	(V ⁻)-0.2 to (V ⁺)+0.2	V
Output Short-Circuit Duration	t _{SO}	Unlimited	/
Operating Fee-Air Temperature Range	T _A	-40 to 85	°C
Storage Temperature Range	T _{STG}	-65 to 150	°C
Junction Temperature Range	TJ	150	°C
Lead Temperature Range	TL	260	°C
MSOP-100 _{JA}		190	°C/W

Note:

- Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are only stress ratings, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions are not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 2. All voltage values, except differential voltage are with respect to network terminal.
- 3. Differential voltages are at IN+ with respect to IN-.

ESD, Electrostatic Discharge Protection

Symbol	Parameter	Condition	Minimum level	Unit	
HBM Human Body Model ESD		MIL-STD-883H Method 3015.8	4		
HBM		JEDEC-EIA/JESD22-A114A	4	kV	
MM	Machine Model ESD	JEDEC-EIA/JESD22-A115	200	V	
CDM	Charged Device Model ESD	JEDEC-EIA/JESD22-C101E	2	kV	

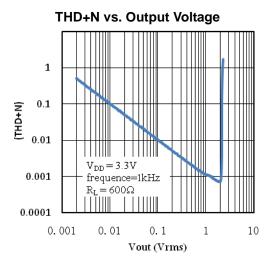
Electronics Characteristics

The *denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C. $V_{DD} = 5V$, $R_L = 25k\Omega$

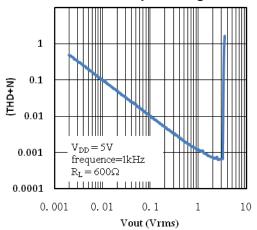
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _{DD}	Supply Voltage		*	3	5	5.5	V
V _{IH}	EN High level input voltage			1.1			V
V _{IL}	EN Low level input voltage					0.4	V
T _A	Operating Temperature Range		*	-40		85	°C
V _{os}	Output Offset Voltage	V_{DD} =3V to 5V, input grounded, unity gain.	*	-3.5	0.6	3.5	mV
OVP	V _{DD} Over Voltage Protection	V _{DD} >5.5V then device shutdown.			5.75		V
PSRR	Power Supply Rejection Ratio				90		dB
V _{OH}	High Level Output Voltage	V_{DD} =5V R _L =2.5K Ω			4.92		V
V OH		V_{DD} =3.3V R _L =2.5K Ω		3.15			V
V _{OL}	Low Level Output Voltage	$V_{DD}=5V R_{L}=2.5K\Omega$			-4.65		V
♥ OL		V_{DD} =3.3V R _L =2.5K Ω				-3	V
I _{IH}	EN High level input current	V _{DD} =5V V _i =V _{DD}	*			1	μA
I_{IL}	EN Low level input current	V _{DD} =5V V _i =0	*			1	μA
		V_{DD} =3.3V V_i = V_{DD}		10.8			
I _{DD} Quie	Quiescent Current	V _{DD} =5V V _i =V _{DD}			12.8		mA
טטי		Shut down mode V_{DD} = 3-5V				0.15	ША
Vo	Output Voltage	THD=1%, V _{DD} =3.3V f=1kHz		2.05			V _{rms}
THD+N	Total Harmonic Distortion and Noise	$V_o=2V_{rms}$ f=1kHz R _L =600 Ω , V _{DD} =3.3V			0.001		%
X _{TALK}	Channel cross talk	$V_o=2V_{rms}$ f=1kHz, $V_{DD}=3.3V$			100		dB
Ι _Ο	Maximum output current	V _{DD} =3.3V			30		mA
SNR	Signal noise ratio	$V_o=2V_{rms}$ BW=22kHz A-weighted and $V_{DD}=3.3V$			110		dB
SR	Slew Rate				12		V/µs
V _N	Noise output voltage	BW=20Hz to 22kHz, V_{DD} =3.3V			5.1		μV_{rms}
G _{BW}	Gain-Bandwidth Product	V _{DD} =3.3V			5		MHz
A _{VO}	Open Loop Large Signal Gain	V _{DD} =3.3V			100		dB
V _{UVP}	External under-voltage detection	V _{DD} =3.3V		1.14	1.21	1.31	V
I _{HYS}	External under-voltage detection hysteresis current	V _{DD} =3.3V			4.7		μA
f _{CP}	Charge pump frequency	V _{DD} =3.3V			400		kHz

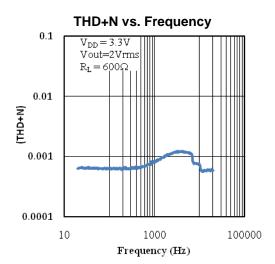
Electronics Characteristics (continued)

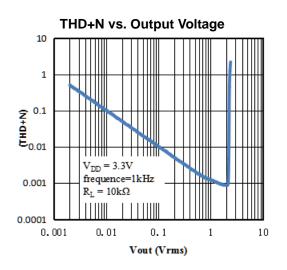
The *denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_A = 25$ °C. $V_{DD} = 5V$, $R_L = 25k\Omega$

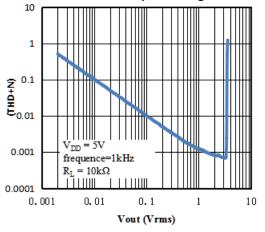

Attenuat ion@mu te	Input-to-output attenuation in shutdown	EN=0V, V _{DD} =3.3V		90		dB
Vo	Output Voltage	THD=1%, V _{DD} =5V f=1kHz	3.05			V _{rms}
THD+N	Total Harmonic Distortion and Noise	$V_o=2V_{rms}$, f=1kHz R _L =600 Ω , V _{DD} =5V		0.001		%
X _{talk}	Channel cross talk	$V_o=2V_{rms}$, f=1kHz, $V_{DD}=5V$		95		dB
I _o	Maximum output current	V _{DD} =5V		60		mA
SNR	Signal noise ratio	V _o =2V _{rms} , BW=22kHz A-weighted V _{DD} =5V		112		dB
SR	Slew Rate			12		V/μs
V _N	Noise output voltage	BW=20Hz to 22kHz, V _{DD} =5V		4.5		μV_{rms}
G _{BW}	Gain-Bandwidth Product	V _{DD} =5V		7		MHz
A _{VO}	Open Loop Large Signal Gain	V _{DD} =5V		110		dB
V _{UVP}	External under-voltage detection	V _{DD} =5V	1.14	1.21	1.31	V
I _{HYS}	External under-voltage detection hysteresis current	V _{DD} =5V		4.7		μΑ
f _{CP}	Charge pump frequency	V _{DD} =5V		410		kHz
Attenuat ion@mu te	Input-to-output attenuation in shutdown	EN=0V, V _{DD} =5V		90		dB

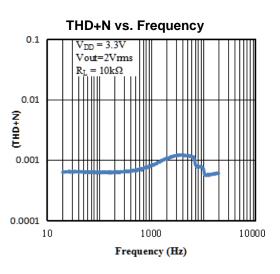
Note:

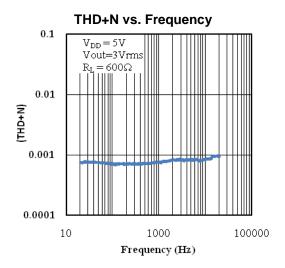

- 1. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
- 2. A heat sink may be required to keep the junction temperature below the absolute maximum rating when the output is shorted indefinitely.
- 3. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

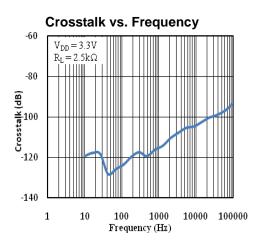


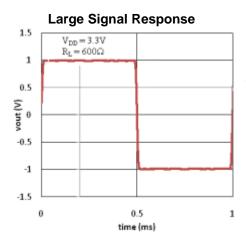

Typical Characteristics T_A=25 °C, V_{DD}=3.3V, unless otherwise noted

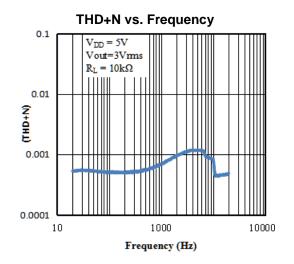

THD+N vs. Output Voltage



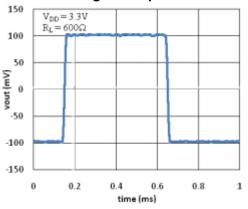

THD+N vs. Output Voltage

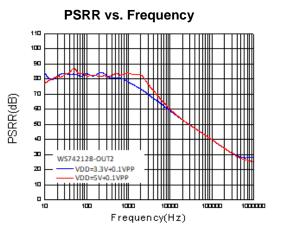




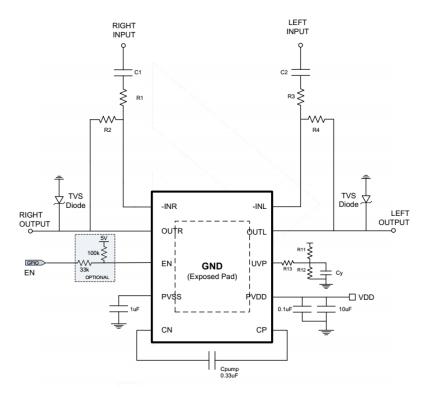


Typical Characteristics (continued) T_A=25 °C, V_{DD}=3.3V, unless otherwise noted



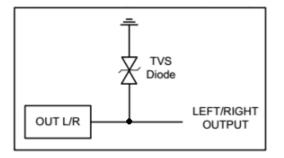


Small Signal Response



Will Semiconductor Ltd.

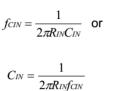
Application Circuit

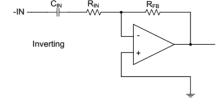

Differential-input, single-ended output, second-order filter R1=R3=15k Ω , R2=R4=30k Ω , C1=C2=33pF, R11=5.6k Ω , R12=2.43k Ω , R13=15k Ω , Cpvss=0.33 to 1µF, Cpump=0.33 to 1µF.

Notes

In some applications, if the power supply noise needs to be filtered, the ferrite bead is recommended in a value of 600ohm@100MHz, instead of RC network. RC network normally will lower the power supply resulting in the degraded the audio performance. If the resistor is not chosen properly, which can trigger the internal UVP detection circuit and shut down the output, as depicted below.

2. In order to protect the device against the power surge, transient voltage suppressor (TVS) devices are recommended at the output pins OUTL/OUTR.


Application Notes


Gain-Setting Resistors Ranges and Input-Blocking Capacitors

The gain-setting resistors, R_{IN} and R_{FB} , must be chosen so that noise, stability, and input capacitor size of the WS742128 are kept within acceptable limits. Voltage gain is defined as R_{FB} divided by R_{IN} . Table 1 lists the recommended resistor value for different gain settings. Selecting values that are too low remands a large input ac-coupling capacitor C_{IN} . Selecting values that are too high increases the noise of the amplifier. The gain-setting resistor must be placed close to the input pins to minimize capacitive loading on these input pins and to ensure maximum stability.

Input Res., R _{IN}	Feedback Res., R _{fb}	Inverting Gain
22 kΩ	22 kΩ	-1 V/V
15 kΩ	30 kΩ	-2 V/V
10 kΩ	100 kΩ	-10 V/V

 Table 1. Input Capacitor with 2Hz cutoff and Resistor Values Recommended

Equation 1. Cutoff decision Cutoff

Figure 2.Non-Inverting Gain Configuration

INPUT-BLOCKING CAPACITORS

DC input-blocking capacitors are required to be added in series with the audio signal into the input pins of WS742128. These capacitors block the dc portion of the audio source and allow WS742128 inputs to be properly biased to provide maximum performance. These capacitors form a high-pass filter with the input resistor, R_{IN} . The cutoff frequency is calculated using the equation below. For this calculation, the capacitance used is the input-blocking capacitor, and the resistance is the input resistor chosen from Table 1; then the frequency and/or capacitance can be determined when one of the two values is given.

2nd Order Filter Typical Application

Several audio DACs used today require an external low-pass filter to remove out-of-band noise. This is possible with the WS742128, as it can be used like a inverting OPAMP. Several filter topologies can be implemented, just like single-ended. In Figure 3, a multi-feedback (MFB) with single-ended input is shown. An ac-coupling capacitor to remove dc content from the source is shown; it serves to block any dc content from the source and lowers the dc-gain to 1, helping reducing the output dc-offset to minimum. The resistor values should have a low value for obtaining low noise, but should also have a high enough value to get a small size ac-coupling capacitor.

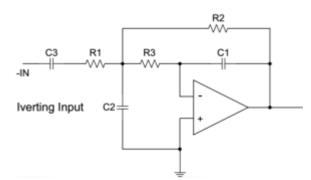


Figure 3. Second-Order Active Low-Pass Filter

Charge Pump Flying Capacitor and PVSS Capacitor

The charge pump flying capacitor serves to transfer charge during the generation of the negative supply voltage. The PVSS capacitor must be at least equal to the charge pump capacitor in order to allow maximum charge transfer. Low ESR X5R or X7R capacitors are recommended selection, a value of typical 0.33μ F is recommended for C_{PUMP}, and a value of typical 1µF is recommended for PVSS. Capacitor values can be smaller than the value recommended, but the maximum output voltage may be reduced and the device may not operate to specifications.

Decoupling Capacitors

The WS742128 requires adequate power supply decoupling to ensure that the noise and total harmonic distortion (THD) are low. A good low equivalent-series-resistance (ESR) X5R or X7R ceramic capacitor, typically a combine of paralleled 0.1μ F and 10μ F, placed as close as possible to the device VDD lead works best. Placing this decoupling capacitor close to the WS742128 is important for the performance of the amplifier. For filtering lower-frequency noise signals, a 10μ F or greater capacitor placed near the audio power amplifier would also help, but it is not required in most applications because of the high PSRR of this device.

Pop-Free Power-Up

Pop-free power up is ensured by keeping the EN (shut down pin) low during power-supply ramp up and ramp down. The EN pin should be kept low until the input ac-coupling capacitors are fully charged before asserting the EN pin high to achieve pop-less power up. Figure6 illustrates the preferred sequence.

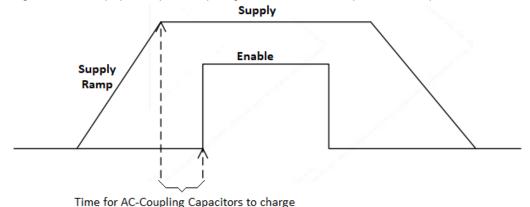
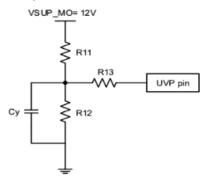
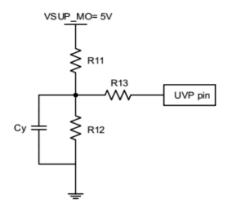



Figure 4. Power-Up Sequences

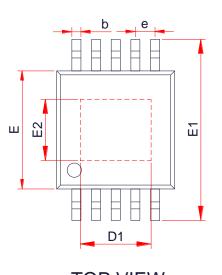
External Under-voltage Detection

External under-voltage detection can be used to shut down the WS742128 before an input device can generate a pop noise. Although the shut down voltage is 1.21V, customers need to consider the accuracy of system passive components such as resistors and associated temperature variation. Users often select a resistor divider to obtain the power-on and shut down threshold for the specific application. The typical thresholds can be calculated as follows, respectively for VSUP_MO at 5V and 12V. Usually for best power down noise performance, 12V supply is recommended for UVP circuitry as below. Typically this 12V is the power supply which generates the 5V supply for WS742128 PVDD pins.

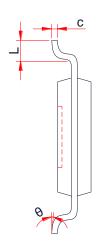

Case 1: VSUP_MO=12V (Recommended)

 V_{UVP} =(1.21V-4.7µA*R13)*(R11+R12)/R12; $V_{hysteresis}$ =4.7µA*R13*(R11+R12)/R12; With the condition R13>>R11//R12. For example, if R11=11k, R12=1.4k and R13=47k, then V_{UVP} =8.76V; $V_{hysteresis}$ =1.957V. Here, V_{UVP} is the shut down threshold. In this case, the voltage at UVP pin 11 is greater than 1.431V under worst case of VSUP_MO ripples.

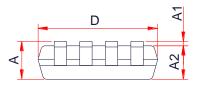
Case 2: VSUP_MO=5.0V


 V_{UVP} =(1.21V-4.7µA*R13)*(R11+R12)/R12; $V_{hysteresis}$ =4.7µA*R13*(R11+R12)/R12; With the condition R13>>R11//R12. For example, if R11=5.6k, R12=2.2k and R13=47k, then V_{UVP} =3.506V; $V_{hysteresis}$ =0.783V. Here, V_{UVP} is the shut down threshold. In this case, the voltage at UVP pin 11 is greater than 1.431V under worst case of VSUP_MO ripples.

Capacitive Load


The WS742128 has the ability to drive a high capacitive load up to 220pF directly. Higher capacitive loads can be accepted by adding a series resistor of 47Ω or larger.

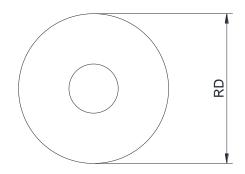
PACKAGE OUTLINE DIMENSIONS

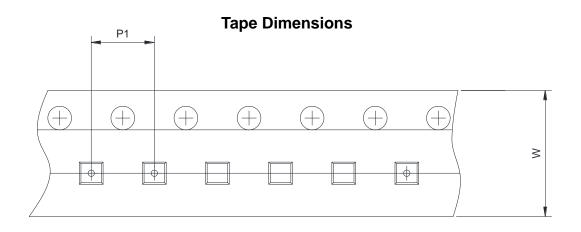


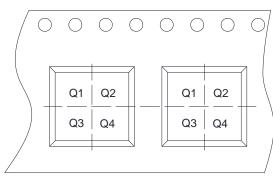
MSOP-10L

TOP VIEW

SIDE VIEW


SIDE VIEW


Symbol	Dimen	Dimensions In Millimeters (mm)					
	Min.	Тур.	Max.				
А	0.82	0.96-	1.10				
A1	0.02	- 0.15					
A2	0.75	0.85	0.95				
b	0.18	-	0.28				
С	0.09	-	0.23				
D	2.90	3.00	3.10				
D1	1.70	1.80	1.90				
E1	4.75	4.90	5.05				
E	2.90	3.00	3.10				
E2	1.45	1.55	1.65				
е		0.50 BSC					
L	0.40	- 0.80					
θ	0°	- 6°					


TAPE AND REEL INFORMATION

Reel Dimensions

Quadrant Assignments For PIN1 Orientation In Tape

User Direction of Feed

RD	Reel Dimension	🗌 7inch	🔽 13inch		
W	Overall width of the carrier tape	🗖 8mm	🔽 12mm		
P1	Pitch between successive cavity centers	🗖 2mm	🗌 4mm	🗹 8mm	
Pin1	Pin1 Quadrant	🗖 Q1	🗖 Q2	✓ Q3	🗖 Q4

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Gate Drivers category:

Click to view products by Will Semiconductor manufacturer:

Other Similar products are found below :

 00028
 00053P0231
 8967380000
 56956
 CR7E-30DB-3.96E(72)
 57.404.7355.5
 LT4936
 57.904.0755.0
 5801-0903
 5803-0901
 5811-0902

 5813-0901
 58410
 00576P0030
 00581P0070
 5882900001
 00103P0020
 00600P0005
 00-9050-LRPP
 00-9090-RDPP
 5951900000
 01

 1003W-10/32-15
 LTILA6E-1S-WH-RC-FN12VXCR1
 0131700000
 00-2240
 LTP70N06
 LVP640
 0158-624-00
 5J0-1000LG-SIL
 020017-13

 LY1D-2-5S-AC120
 LY2-0-US-AC120
 LY2-US-AC240
 LY3-UA-DC24
 00-5150
 00576P0020
 00600P0010
 LZNQ2M-US-DC5
 LZNQ2

 US-DC12
 LZP40N10
 00-8196-RDPP
 00-8274-RDPP
 00-8275-RDNP
 00-8609-RDPP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00

 9051-RDPP
 00-9091-LRPP
 00-9291-RDPP
 00-8722-RDPP
 00-8728-WHPP
 00-8869-RDPP
 00